Laboratory for Nuclear Science

Highlights from CMS

Gian Michele Innocenti

Massachusetts Institute of Technology (on behalf of the CMS collaboration)

MIT HIG group's work was supported by US DOE-NP

12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions September 22-27, 2024

Overview of CMS contributions

In this conference \rightarrow many new preliminary and final results, presented in 23 parallel talks + 2 posters

https://cms-hin-public.web.cern.ch/speakers/HP2024

Focus of this talk

Properties of nuclear matter in nuclei

Heavy-quark parton shower in vacuum

Phenomenology of jet-medium interactions

Characterizing the parton dynamics in nuclei

Ultraperipheral heavy-ion collisions

- highest γ-nucleon center-of-mass energy
- absence of sizable final state effects

K. Hencken, M. Strikman et al. Phys.Rept.458 1-171, 2008

Coherent J/ ψ production in PbPb UPCs

Low $p_T J/\psi$ (~50 MeV)

 Photon interacts coherently with the nucleus \rightarrow average gluon density at fixed Q²

 \rightarrow strong suppression at high W_{vN} values (small x_{BJ}) compared to scenarios without nuclear effect (IA) \rightarrow both shadowing models (*linear evolution*) and saturation (non-linear) fail in describing the observed W_{vN} dependence

First measurement of incoherent J/ ψ in UPCs vs W_{YN}

→ Probing the local gluon density and fluctuations

First measurement of incoherent J/ ψ in UPCs vs W_{VN}

Strong suppression observed at large W_{yN} (small x) w.r.t. no-nuclear effects predictions CMS data "challenge" both shadowing and saturation descriptions

First measurement of incoherent J/ ψ in UPCs vs W_{vN}

→ Need to "overconstrain" calculations with new probes that provide additional/complementary constraints

\rightarrow Overcome the main limitations of current J/ ψ measurements: complex theoretical description and limited Q² coverage

Open charm production in UPCs: a new probe for small-x matter

 \rightarrow ideal probe to test the transition towards low-x nuclear matter in absence of sizable final state effects

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See Chris McGinn's talk <u>CMS-PAS-HIN-24-003</u>

ATLAS, ATLAS-CONF-2017-011 S. Klein, R. Vogt et al: Phys. Rev. C, v66, 2002

D^o photonuclear production in UPCs

→ in Xn0n PbPb events with rapidity gap with 2023 PbPb data

A new trigger strategy for both soft and hard photonuclear events \rightarrow O(1000) times more photonuclear events than in Run 2

See Chris McGinn's talk **CMS-PAS-HIN-24-003**

First measurement of the D⁰ photonuclear production in UPCs

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See <u>Chris McGinn's talk</u> **CMS-PAS-HIN-24-003**

11

First measurement of the D⁰ photonuclear production in UPCs

 \rightarrow First constraints on nuclear gluon PDFs over a wide region of Q² ($O(10) < Q^2 < hundreds GeV^2$) at low-x (~ $5*10^{-4} < x < 10^{-2}$) in the absence of sizable final state effects \rightarrow opens the way for a large program of open heavy-flavor hadrons, jets and correlations in UPCs collisions at the LHC

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See Chris McGinn's talk

Heavy-quark parton shower in vacuum

New insights into the dead-cone effect in vacuum

Dead-cone effect: suppression of emissions from a radiator (quark) within $\theta_d < m_q/E_q$

ALICE, Nature 605 (2022) 440-446

Reclustering technique:

"Follow" the heavy quark using the heavy-flavor hadron as proxy for the heavy quark

 \rightarrow led to the first direct observation of the charm dead-cone ALICE, <u>Nature 605 (2022) 440-446</u>

<u>Charm</u> dead cone with late-k_T algorithm

- PF jets $p_T > 100 \text{ GeV}$
- Reclustered with late-k_T grooming
 - \rightarrow most collinear splitting with k_T>1 GeV

 \rightarrow stronger constraints on the "perturbative" collinear radiation (where the dead-cone effect is largest) \rightarrow more direct/unbiased comparison with pQCD calculations

See Jelena Mijuskovic's talk <u>CMS-PAS-HIN-24-007</u>

First direct manifestation of the beauty dead cone

New experimental technique based on BDT

tag hadronic and non-hadronic B-hadron decays

substantial increase in B-jet statistics

→ enable reclustering analyses for b-hadron jets

First direct manifestation of the beauty dead cone

New experimental technique based on BDT

tag hadronic and non-hadronic B-hadron decays

substantial increase in B-jet statistics

→ enable reclustering analyses for b-hadron jets

First observation of a reduction of the collinear radiation for B-hadron tagged jets → **b-quark dead-cone!**

Phenomenology of jet-medium interaction

Jet-medium phenomenology: a schematic overview

Medium-induced jet modifications

e.g. medium-induced gluon radiation, elastic scatterings

Two strategies:

• Option 1) maximize the control of the underlying interaction mechanism (e.g. medium response) Option 2) maximize the control on the scale of the interaction

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

<u>Medium response</u>

positive and negative wakes, medium recoils, QGP holes...

> \rightarrow "entangled" in a **complex scale** (space/time, ..) dependent evolution

New observables to constrain jet-medium interactions

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

First energy-energy measurement in PbPb \rightarrow angular scale

Photon-tagged jet axis decorrelation

Photon does not interact strongly in QGP \rightarrow y tags the initial parton p_T

- isolate the effect of jet-medium modifications with a calibrated probe with limited sensitivity to medium response

$$\Delta \mathbf{j} = \sqrt{(\eta_{\rm E} - \eta_{\rm WTA})^2 + (\phi_{\rm E} - \phi_{\rm WTA})^2}$$

E-Scheme axis = direction of average energy flow in the jet \rightarrow sensitive to soft radiation

WTA axis = direction of leading energy flow in jet

 \rightarrow aligned with the hard-collinear core of the jet

Δ j has a strong sensitivity to the jet's internal structure:

- $\Delta \mathbf{j} = \mathbf{0} \rightarrow \text{collimated "hard" jets}$
- $\Delta j > 0 \rightarrow$ wider jet with more soft radiation

Photon-tagged jet axis decorrelation

Unambiguous evidence for a higher survival rate of narrow jets in PbPb collisions:

 \rightarrow in the presence of an energy-calibrated probe (no bias due to jet-p_T bin migration)

 \rightarrow limited dependence on the medium response

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See Molly Park's talk, CMS-PAS-HIN-21-019

HYBRID, no elastic, no wake

HYBRID, no elastic, wake

HYBRID, elastic, no wake

HYBRID, elastic, wake

Jet axis decorrelations for inclusive jets

Complementary (highly-differential) constraints from jet axis decorrelations with inclusive-jet measurements: \rightarrow folding medium-induced jet medium modifications with bin-migration effects

See <u>Raghunath Pradhan's talk</u> <u>CMS-PAS-HIN-24-010</u>

Z⁰-hadron correlations in PbPb

\rightarrow "isolate" the effects of medium-response

Z⁰ provides an unquenched reference with high experimental accuracy \rightarrow medium response effects without jet fragments

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Z⁰ and Wake Hadron correlation in Hybrid model D. Pablos, K. Rajagopal, YJ Lee

Medium response with Z⁰-tagged hadrons in PbPb and pp

Clear depletion in PbPb on the Z side ($\Delta \phi = 0$)

 $d(\Delta N_{ch})/d\Delta \phi_{ch,Z}$ dd PbPb

See <u>Yen-Jie Lee's talk</u> <u>CMS-PAS-HIN-23-006</u>

→ Without wake/recoil effect models (dashed lines) under-predict the depletion in PbPb on the Z side

Medium response with Z⁰-tagged hadrons in PbPb and pp

dd PbPb

 $d\langle \Delta N_{ch} \rangle / d\Delta \phi_{ch,Z}$

See Yen-Jie Lee's talk <u>CMS-PAS-HIN-23-006</u>

 \rightarrow Good agreement when including medium response (e.g. recoil, wake, ..) \rightarrow direct evidence of medium-response with the Z+Jet event (confirmed by analogous study as a function of $\Delta y_{ch,Z}$)

Energy-energy correlators

\rightarrow scan the medium interaction at a fixed/tunable scale $EEC(\Delta r) = \frac{1}{W_{pairs}} \frac{1}{\delta r} \sum_{jets \in [p_{T,1}, p_{T,2}]} \sum_{jets \in [\Delta r_a \Delta r_a]} \left(p_{T,i} p_{T,j} \right)^n$

Angular distance pairs of particles within the jet, weighted by the product of their momenta

Carlota Andres et al., Phys. Rev. Lett. 130, no.26, 262301 (2023)

First EEC measurement in PbPb collisions at 5.02 TeV

 \rightarrow EEC measurements are feasible with high accuracy in PbPb collisions! \rightarrow PbPb results present qualitatively the same structure as in pp collisions

See Jussi Viinikainen's talk, <u>CMS-PAS-HIN-23-004</u>

EEC PbPb/pp ratio at 5.02 TeV

First PbPb measurement shows the potential of this new observable: \rightarrow Map the angular properties of jet-medium interaction with a "self-analyzing" observable with well-defined boundaries between perturbative and non-perturbative physics

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Carlota Andres et al., Phys. Rev. Lett. 130,

Conclusion and outlook

New experimental constraints on nuclear matter down to small x:

- incoherent + coherent charmonium photoproduction in UPCs vs W_{VN}
- → first energy-dependent characterization of global and local gluon properties at small x
- \rightarrow high-accuracy constraints at fixed Q² on the possible emergence of gluon saturation

first measurement of open-heavy flavor production in UPCs:

- \rightarrow First constraints on nPDFs <u>over a wide region of Q²</u> at small-x in the absence of sizable final state effects
- \rightarrow likely the best and "simplest" observable for the transition toward saturation

Conclusion and outlook

Substantial advancement in the characterization of in-vacuum parton shower: with new experimental techniques and grooming algorithms → first manifestation of the dead cone effect for beauty quarks in vacuum \rightarrow open the way for the first "microscopic" observation of flavor-dependence

of in-medium E_{loss} in PbPb collisions

Fundamental progress in the characterization of jet-medium interactions:

- measurements of the jet-axis decorrelation in γ -jet
- → evidence for a higher survival rate of narrow jets in PbPb without "known" biases Z-hadron correlations
- \rightarrow direct observation of medium-response in Z⁰-hadron correlations
- first EEC measurement in PbPb
- \rightarrow angular properties of jet-medium interaction with a "self-analyzing" observable with a traceable separation between perturbative and non-perturbative effects

Conclusion and outlook

Substantial advancement in the characterization of in-vacuum parton shower: with new experimental techniques and grooming algorithms → first manifestation of the dead cone effect for beauty quarks in vacuum \rightarrow open the way for the first "microscopic" observation of flavor-dependence

of in-medium E_{loss} in PbPb collisions

Fundamental progress in the characterization of jet-medium interactions:

- measurements of the jet-axis decorrelation in γ -jet
- -> evidence for a higher survival rate of narrow jets in PbPb without "known" biases Z-hadron correlations
- \rightarrow direct observation of medium-response in Z⁰-hadron correlations
- first EEC measurement in PbPb
- \rightarrow angular properties of jet-medium interaction with a "self-analyzing" observable with a traceable separation between perturbative and non-perturbative effects

Thank you for your attention!

<u>Meet CMS speakers</u> >>

CMS as a broad-spectrum high-density QCD experiment

Wide pseudorapidity coverage, from high to low pt:

- Charged tracks in $|\eta_{\text{tracks}}| \leq 3$
- Calorimetry (ECAL/HCAL) in |n_{cal} ≤ 5.2
- Muon detectors in $\eta_{muon} \leq 3.0$
- ZDC + PPS detectors

 \rightarrow With even stronger capabilities after HL-LHC upgrades

Large-coverage high-rate detector for hadronic and EM probes

- charged hadrons
- jets, heavy-flavour hadrons
- isolated photons, Z/W bosons

Hard probes for high-density QCD with CMS

→ Multi-scale characterization of the properties of QCD matter at high temperatures and high partonic density

 \rightarrow selected CMS results \rightarrow first results with the Run 3 from Run 2

Rur	n 2	Long Shutdown 2			Run 3				
PbPb (2. pPb (0.1	.2 nb ⁻¹) 8 pb ⁻¹)					PbPb '23 (1.7 nb⁻¹) Total PbPb (6 nb ⁻¹) pO (nb), OO (nb)			
2015	2018	2019	2020	2021	2022	2023	2024	202	

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Jets, heavy-flavor and exotic hadrons, Z/W over a wide p_T and η range:

- \rightarrow partonic properties of the hot QCD medium
- \rightarrow in-vacuum and in-medium parton propagation
- \rightarrow mechanics of hadron formation
- \rightarrow parton dynamics in cold nuclear matter

BACKUP: New HP results not covered

Medium-induced jet axis decorrelations

 \rightarrow How does the medium modifies the structure of jets?

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See <u>Raghunath Pradhan's talk</u>

CMS-PAS-HIN-24-010

More collimated jets in central than peripheral PbPb collisions: suppression of wide-fragmenting jets? "bias" bin-by-bin migration from higher-p_T jets?

Medium-induced jet axis decorrelations

\rightarrow How does the medium modifies the structure of jets?

E-Scheme axis direction of average energy flow in the jet **WTA axis** = direction of leading energy flow in jet

$$\Delta j = \sqrt{(\eta E - \eta_{WTA})^2 + (\phi_E - \phi_{WTA})^2}$$

- $\Delta \mathbf{j} = \mathbf{0} \rightarrow \text{collimated "hard" jets,}$
- $\Delta j > 0 \rightarrow$ less collimated jets, more soft radiation

See <u>Raghunath Pradhan's talk</u> CMS-PAS-HIN-24-010

Measured jet p_T

PbPb and pp jets, at the same p_T, are "different" \rightarrow they do not correspond to the same initial parton p_T

Transverse momentum balance in high-multiplicity pPb pPb 174.56 nb⁻¹ (8.16 TeV **CMS** *Preliminary* Study of the transverse momentum balance $x_J = p_{T,sub} / p_{T,lead}$ x_j ratio: $[120 > N^{offline} > 60] / [60 > N^{offline} > 10]$ anti- $k_{\tau} R = 0.4$ for pairs of jets with different pseudorapidity: 4 $p_{-}^{J_1} > 100 \text{ GeV}$ $p_{\perp}^{J_2} > 50 \text{ GeV}$ $\Delta \phi_{\text{dijets}} > \frac{5\pi}{6}$ 2 • Midrapidity: $|\eta_{CM}| < 1$ • Forward (p direction): $1.2 < \eta_{CM} < 2.4$ • Backward (Pb direction): $-3.3 < \eta_{CM} < -1.2$

Leading jet	Subleading jet
midrapidity	midrapidity
midrapidity	forward
midrapidity	backward
forward	midrapidity
backward	midrapidity

High-multiplicity/low-multiplicity x_J ratio:

- no modifications were observed at high multiplicity for any configuration of jet-jet geometry
- well described by MC simulation without Eloss

Transverse momentum balance in high-multiplicity pPb pPb 174.56 nb⁻¹ (8.16 reV) **CMS** *Preliminary* Study of the transverse momentum balance $x_J = p_{T,sub} / p_{T,lead}$ 1.2 anti- $k_{\tau} R = 0.4$ for pairs of jets with different pseudorapidity: - Unfolded Data $p_{-}^{J_1} > 100 \text{ GeV}$ PYTHIA8+EPOS $p_{-}^{J_2} > 50 \text{ GeV}$ Systematic uncertainties $\Delta \phi_{\text{dijets}} > \frac{5\pi}{6}$ $\langle x \rangle_{j}$ range / $\langle x \rangle_{j}$ [10,60] • Midrapidity: $|\eta_{CM}| < 1$ • Forward (p direction): $1.2 < \eta_{CM} < 2.4$ • Backward (Pb direction): $-3.3 < \eta_{CM} < -1.2$ 0.9 Leading: forward 0.8 Subleadina: midrapidit 0.7 60 to 120 120 to 185 185 to 250 250 to 400 • no modifications were observed at high multiplicity for any configuration of jet-jet geometry N^{offline}

Leading jet	Subleading jet
midrapidity	midrapidity
midrapidity	forward
midrapidity	backward
forward	midrapidity
backward	midrapidity

High-multiplicity/low-multiplicity x_J ratio:

- well described by MC simulation without E_{loss}

Average transverse momentum balance decreases for increasing N_{ch} :

 \rightarrow Energy-momentum conservation, multi-jets

See Dener's talk CMS-PAS-HIN-23-010

Near-side jet peak structure

See <u>Sayan's poster</u> CMS-PAS-HIN-24-008

BACKUP: UPCs

First energy-dependent measurement of incoherent J/ ψ in UPCs

Incoherent production (<p_T> ~ 500 MeV)

- Photon interacts with a single nucleon or sub-nucleon (\rightarrow nuclear breakup)
- Probing the local gluon density and fluctuations

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See Zaochen Ye's talk

CMS-PAS-HIN-23-009

First energy-dependent measurement of incoherent J/ ψ in UPCs

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See Zaochen Ye's talk CMS-PAS-HIN-23-009

Vector-meson photoproduction in UPC

Vector mesons (VM) probe gluonic structure of nucleus and nucleon. \rightarrow At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]2

Coherent production ($< p_T > ~ 50 \text{ MeV}$)

- VM <pt> ~ 50 MeV
- Probing the averaged gluon density

Incoherent production VM ($< p_T > ~ 500 \text{ MeV}$)

 Photon fluctuated dipole couples coherently to entire nucleus Target nucleus remains intact

 Photon fluctuated dipole couples to individual nucleons • Target nucleus usually breaks Probing the local gluon density fluctuation

Sketches from Zaochen Ye's talk at GHP2023

Coherent J/ ψ in PbPb UPCs: CMS vs ALICE

ALICE, JHEP 10 (2023) 119 CMS, Phys. Rev. Lett. 131 (2023) 262301

CMS Experiment at the LHC, CERN Data recorded: 2023-Oct-10 05:24:04.000512 GMT Run / Event / LS: 374925 / 591414336 / 646

A photonuclear dijet candidate in PbPb UPCs '23 collected with the new triggering algorithms

1,0

Clean dijets events with negligible underlying QCD background

48

Rapidity gap selection

- Event selection efficiency $\varepsilon_{evt} > 98\%$ for both direct-photon and resolved-photon events
- With simultaneous requirements on ZDC Xn0n and rapidity gap
 - \rightarrow negligible contamination from "hadronic" events

Events passing the rapidity gap condition Events failing the rapidity gap condition (high N_{ch}) (mostly coming from "hadronic" PbPb collisions)

D⁰ reconstruction and yield-extraction

D⁰ candidate reconstruction and selection:

 \rightarrow topological selection optimized in bins of $D^0 p_T$ and rapidity

- pointing angle (α)
- decay length normalized to its error (d₀)
- D⁰ vertex probability
- opening angle between the D⁰ daughter prongs

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Fitting strategy:

• exponential function to model the combinatorial background

double Gaussian to model the signal

• "wide" Gaussian shape for candidates with the "swapped" mass hypothesis

Crystal Ball functions to model the contribution from $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays

See <u>Chris McGinn's talk</u> Invariant mass distributions in intervals of $D^0 p_T$ and y CMS-PAS-HIN-24-003

D⁰ reconstruction and selection efficiencies

Monte Carlo samples based on Pythia 8 + EvtGen yN events with EPPS21Pb nPDF parametrization

D^o efficiencies strongly dependent on p_T and y: due to acceptance, primary/secondary vertex resolution, topological selections

$d\sigma/dp_T dy$ for photonuclear D⁰ production in UPC collisions

$d\sigma/dp_T dy$ for photonuclear D⁰ production in UPC collisions

Xn0n and 0nXn cross section are first measured separately \rightarrow clear rapidity dependence of the D⁰ cross-section with respect to the incoming photon direction and then combined by symmetrizing the 0nXn measurement $\frac{d^2\sigma}{dp_{\rm T}dy_{\rm Xn0n\ tot}} = \frac{d^2\sigma}{dp_{\rm T}dy_{\rm Xn0n}} + \frac{d^2\sigma}{dp_{\rm T}dy_{\rm OnXn}}(y \to -y)$

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

"Building" FONLL-based predictions for D^o in UPCs at the LHC

FONLL for prompt inclusive charm photoproduction \rightarrow full agreement with existing predictions for ZEUS/H1

S. Frixione, P. Nason, JHEP 0203 (2002) 053 M. Cacciari, M.Greco and P. Nason, JHEP 9805:007,1998

FONLL predictions developed with **Anna Maria Stasto**, based on the original code for photonuclear heavy-flavor production (paper in preparation)

"Building" FONLL-based predictions for D^o in UPCs at the LHC

FONLL for prompt inclusive charm photoproduction \rightarrow full agreement with existing predictions for ZEUS/H1

ATLAS, ATLAS-CONF-2017-011 K. J. Eskola et al., https://arxiv.org/pdf/2404.09731

Reweight photon flux to match those expected in UPCs

Multiply for the predicted Xn0n "survival" probability in the presence of EM dissociation (EMD)

 estimated by reweighting gen-level Pythia events by the EMD-corrected photon flux for 0nXn topologies

BACKUP: heavy-quark parton shower

Lund plane of D-tagged jets to expose charm mass effects

- Expose modification of the angular scale in D-jets relative to inclusive jets
- Study different regions of the Lund jet plane using different grooming algorithms
- \rightarrow sensitivity to the c mass, gluon splitting, and hadronization effects
- \rightarrow first measurement of c jet substructure in the hard and collinear region of the jet shower

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Lund plane of D-tagged jets to expose charm mass effects

Fully corrected θ_{L} nd θ_{SD} distributions for D⁰-tagged and inclusive jets and their ratios

• Shift observed towards bigger angles with respect to the inclusive jets (dead cone effect) • A more prominent shift is observed for the late-k-algorithm

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See Jelena Mijuskovic's talk <u>CMS-PAS-HIN-24-007</u>

Lund plane of D-tagged jets to expose charm mass effects

• Late-k_T: the gluon splitting contribution is negligible and has an effect mostly at large angles.

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

- **SD**: contribution stronger from gluon splitting
- emissions at larger angles than the ones found by late-k_T

First direct observation of the b-quark dead cone

initial jet constituents

Heavy hadron decay daughters **do not** follow angular ordering

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

b hadron decays crucial for b jet substructure measurements \Rightarrow developed a tool to partially reconstruct the b hadron

b-jet substructure with aggregation of **b**-hadron decays

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

b-jet substructure with aggregation of **b**-hadron decays

More imbalanced splittings for b jets

See Lida Kalipoliti's talk **CMS-PAS-HIN-24-005**

BACKUP: Jet-medium interactions

Search for energy loss in pPb collisions: high-pTV2

 \rightarrow insights into the potential indications of high parton energy energy loss with 4-subevent cumulant method extended to high p_T

 \rightarrow positive v₂{4} persisting up to p_T ~20 GeV

similarity between high-multiplicity pPb and peripheral PbPb events in magnitude and p_T dependence

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Similar magnitude and similar trend for both PbPb and pPb when POI > 6 GeV across all multiplicity bins

QGP diffusion properties with low p_T B hadrons

charmed and beauty mesons down to low $p_T \rightarrow$ brownian particles inside the hot medium

• $m_{c,b} > m_{u,d,s}$: "Brownian regime" in the QGP

 \rightarrow sensitive to the **QGP diffusion** and drag properties

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Z⁰-hadrons: comparison with models w/o medium response

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_T
- PYTHIA8 lower p_{T,z}-tagged events can describe jet quenching (similar to no-wake/recoil models with only the jet shower). It fails to describe data for hadron $p_T < 4$ GeV.
- •PYQUEN, (no 4-momentum conservation), fails to describe generally the data

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

See <u>Yen-Jie Lee's talk</u> CMS-PAS-HIN-23-006

Z⁰-hadrons: comparison with models w/ medium response

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p

• Hybrid with wake, Jewel with recoil and CoLBT with wake (solid lines) agree better with the data with hadron $p_T < 4$ GeV

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Z⁰-hadrons: comparison with models w/ medium response

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

• Hybrid with wake, Jewel with recoil and CoLBT with wake (solid lines) agree better with the data with hadron $p_T < 4$ GeV

Multiplicity dependence of $\Psi(2S) / J/\Psi$ in pPb

- Yield ratios to *cancel out* common modification from initial-state effects
- Decrease with increasing multiplicity for prompt while constant for b-hadron decay contributions
- relative $\psi(2S)$ suppression from **final-state interactions** (comoving-particles picture)

70

Multiplicity dependence of $\Psi(2S) / J/\Psi$ in pPb

- Slope of normalized $\psi(2S) / J/\psi$ vs multiplicity
- decreasing trend observed for all ψ rapidities without significant rapidity dependence
- B hadron contributions not affected
- additional constraints on the mechanisms of hadronization and suppression in pA collisions

Probed $x \sim 10^{-4} - 10^{-5}$ in the rapidity range

71

BACKUP: CMS Run 4
LHC long-term schedule

- \rightarrow we would need a few weeks of data to constrain nPDFs with EM probes or high-accuracy heavy-quark probes
- Additional run in Run 3? pPb in Run 4?
- Inputs for Run 5/6 from the "parton-structure" community?

• About a week of OO/pO in 2025: statistics is enough for very soft-probe measurements, assessing quenching in small systems

The upgraded CMS detector for Run 4 (Phase II)

Track-based triggers at Level-1 to sample the entire cross section of photon-induced collisions in both pPb and PbPb events

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

New high resolution silicon tracker with ~ factor 2 larger coverage from $\eta_{\text{tracks}} < 2.4$ to from $\eta_{\text{tracks}} < 4.0$

Big jump in the x_{BJ} coverage of future Run-4 analyses

The upgraded CMS detector for Run 4 (Phase II)

New MIP Timing Detector (MTD) Precision timing $|\eta| < 3$ **Particle Identification over** several units of η !

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

CMS, <u>CERN-LHCC-2019-003</u> CMS, <u>CMS-TDR-014</u>

Upgraded Precision Proton Spectrometer (Run 4 and 5)

Basic working principle of the PPS: Protons which lose a fraction of momentum at the interaction point ($\xi = \Delta p/p$) are deflected away from the beam and measured by PPS \rightarrow direct measure of the $\xi = \Delta p/p$

PPS upgrade will further extend the ξ acceptance of the existing PPS (already operational in Run 3)

- 1.42 < ξ < 20 % for the first three stations (from Run 4)
- 0.33 < ξ < 20 % for the first three stations (from Run 5)

CMS NOTE -2020/008

Highlight: exclusive vector-meson production in pA

 \rightarrow Proof of principle for proton (and ion) tagging with the upcoming pO/OO run (scheduled for 2025)

The upgraded CMS detector for Run 4 (Phase II)

Track-based triggers at Level-1 to sample the entire cross section of photon-induced collisions in both pPb and PbPb events

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

New high resolution silicon tracker with ~ factor 2 larger coverage from $\eta_{\text{tracks}} < 2.4$ to from $\eta_{\text{tracks}} < 4.0$

Big jump in the x_{BJ} coverage of future Run-4 analyses

High-resolution, large acceptance silicon tracker ($|\eta| < 4$) **CMS**, <u>CMS-TDR-014</u>

from 100 x 150 to 50 x 50 μ m² pixel size Tracking out to $|\eta| < 4 !!$

Reduced material budget by up to 2x

Improved p_T resolution by about 25%

Improved mass resolution for resonances

G.M. Innocenti, Overview of CMS results, Hard Probes 2024

Impact parameter resolution improved by 40% Improved heavy flavor measurements (B/D hadrons & b/c-jet tagging)

79

MIP timing detector (MTD)

CERN-LHCC-2019-003

Unlock a wide set of semi-inclusive "DIS-like" measurements with identified hadrons with CMS

Future CMS PID coverage

Large acceptance PID: $|\eta| < 3$ Complementary w/ ALICE & LHCb

A new ZDC CMS detector

Hadronic Section

Rod/Light Guide Interface

