Supported in part by:

STAR

U.S. DEPARTMENT OF ENERGY ENERGY

Office of

Science

Collaboration Overview

Hard Probes 2024 長崎,日本国

Isaac Mooney (Yale University, BNL) for the STAR Collaboration isaac.mooney@yale.edu

Solenoidal Tracker at RHIC (STAR) Main subdetectors

Relativistic Heavy Ion Collider (RHIC) collides p+p, isobars (Zr+Zr, Ru+Ru), Au+Au, etc. beams from $\sqrt{s_{\rm NN}} = 3$ to 510 GeV

Time Projection Chamber (TPC) $[|\eta| < 1 \rightarrow 1.5 \text{ w/ iTPC}]$: momenta of charged tracks + centrality

Barrel Electromagnetic Calorimeter (**BEMC**) $\lceil |\eta| < 1 \rceil$: neutral energy deposits + online trigger

Time of Flight (TOF) $[|\eta| < 0.9]$: PID + pileup mitigation

Heavy flavor tracker (HFT) $[|\eta| < 1]$: displaced decay vertices

Zero Degree Calorimeter (ZDC) [18 m]: Min. bias trigger; luminosity monitoring

Vertex Position Detector (VPD) $[4.24 < |\eta| < 5.1]$: Min. bias trigger; vertex reconstruction

Isaac Mooney

Image: NSWW

Scientific Program

1. Jet modification and medium response

2. High momentum hadrons and correlations

- 3. Heavy quarks and quarkonia
 - 4. Electromagnetic and electroweak probes
 - 5. Nuclear PDFs, saturation, and early time dynamics

6. Future experimental facilities and new techniques

Scientific Program

2. High momentum hadrons and correlations

- 4. Electromagnetic and electroweak probes

5. Nuclear PDFs, saturation, and early time dynamics

6. Future experimental facilities and new techniques

Leading charge correlator, r_c , can probe contribution of string-like fragmentation

First pp measurement: MCs predict more charge correlation than supported by data

<u>Outlook: extension to heavy-ion collisions ongoing</u>

Assessing fragmentation mechanism in jets

Isaac Mooney

<u>Youqi Song, Sep. 25, 11:10</u>

Scientific Program

- 1. Jet modification and medium response
- 2. High momentum hadrons and correlations
- - 3. Heavy quarks and quarkonia
 - 4. Electromagnetic and electroweak probes
 - 5. Nuclear PDFs, saturation, and early time dynamics

6. Future experimental facilities and new techniques

Assessing fragmentation mechanism in jets

New charge-dependent EEC & E3C — in hadronic regime, both MCs fail to capture data; qualitatively consistent with behavior seen in r_c

Outlook: Extension to heavy-ion collisions ongoing

Andrew Tamis, Sep. 24, 10:50 Poster: Jeongmyung Kang, #105

Interlude: quenching in small systems? Recently accepted by PRC! – arXiv:2404.08784

Short answer: disfavored at RHIC by this set of measurements from STAR

Rather, modifications likely due to **early-time dynamics** and/or **initial state configuration**

Path-length-dependent quenching

Bulk is tilted in heavy-ion collisions causing asymmetric paths for isotropically produced hard probes

Jet v_1 : a new observable to probe pathlength-dependent energy loss in QGP

Clear v_1 **signal** for all studied jet *R*, p_T , in **AuAu** data, similar for **isobar** systems as well

Outlook: event-shape engineering with multiplicity fluctuations

Isaac Mooney

Poster: Isaac Mooney, #98

Searching for medium response

Possible expectation of *parton coalescence in jet*: enhanced baryon-to-meson ratio in A+A (left)

2 2.5 3.5 3 No observed modification of *in-jet* p/π ratio for R = 0.2 - 0.4 jets, after extension to lower constituent threshold (right)

Outlook: finalizing for publication in near future

Isaac Mooney

in-Jet Ratios with R = 0.4, Jet $p_{\tau}^{raw} > 9$ GeV/c, $p_{\tau}^{const} > 2$ GeV/c

<u>Gabe Dale-Gau, Sep. 24, 10:50</u>

Recovering charm-associated radiation

Wider jets \rightarrow more medium interaction/*E*-loss \implies ratio < 1, but recover more energy + more potential for medium response \implies ratio > 1 Observe: No radius dependence of R_{CP} within uncertainties. Agrees with models predicting minimal *R*-dependence of suppression.

Outlook: measuring generalized angularities

Isaac Mooney

Diptanil Roy, Sep. 25, 11:50 Poster: Tanmay Pani, #97

11

Scientific Program

2. High momentum hadrons and correlations

- 4. Electromagnetic and electroweak probes
- 5. Nuclear PDFs, saturation, and early time dynamics

6. Future experimental facilities and new techniques

Dissociation of charmonium states

Filling in low-energy regime where primordial generation expected to be dominant. Consistent with SPS at 17.3 GeV; data & model exhibit **minimal energy dependence**.

4	0
I.	J

Dissociation of charmonium states

 $\psi(2S)/J/\psi/\psi(2S)/J/\psi < 1$: 1st RHIC observation of charmonium sequential suppression

Outlook: finalizing both analyses for publication in near future

Hard Probes, 9/23/2024

Filling in low-energy regime where primordial generation expected to be dominant. Consistent with SPS at 17.3 GeV; data & model exhibit minimal energy dependence.

Isaac Mooney

<u>Wei Zhang, Sep. 24, 9:40</u>

14

Consistency between 510 and 200 GeV at STAR + finer binning & extension to higher multiplicity

Large uncertainty in highest multiplicities, but seems to be a steeper trend at RHIC than LHC

Outlook: correcting multiplicity via unfolding

Brennan Schaefer, Sep. 24, 14:20

15

Scientific Program

- 1. Jet modification and medium response
 - 2. High momentum hadrons and correlations
- 3. Heavy quarks and quarkonia
 - 4. Electromagnetic and electroweak probes
 - 5. Nuclear PDFs, saturation, and early time dynamics

6. Future experimental facilities and new techniques

Accessing the QGP temperature Isobar, 200 GeV

Phys. 15, 1040–1045 (2019 Phys. Rev. Lett. 92, 092301 (2004

Excess (thermal, ρ) = data - cocktail

v_{ch}/dy) (20 MeV/c²)⁻¹ ----- T_{IMR} fit (200 GeV) /dM/dy/(dN 0.3<p^{ee}_T<5.0 GeV/c Data – Cocktail 10^{-9} = fit by $M^{3/2} \times e^{-M/T}$ (d²N Temperature = 293 ± 11 MeV 0.5

 $T_{\rm IMR}^{200 \text{ GeV}} = 293 \pm 11(\text{stat.}) \pm 27(\text{sys.}) \text{ MeV}$

Extract T early in partonic *regime* from IMR: well above $T_{\rm pc}$

 $T_{\rm IMR}^{200 \text{ GeV}} = 199 \pm 6(\text{stat.}) \pm 13(\text{sys.}) \text{ MeV}$

Time-averaged T over the evolution, from LMR: hint of QGP contribution

Outlook: finalizing for publication in near future

<u>Jiaxuan Luo, Sep. 24, 11:50</u>

Accessing the QGP temperature **BES-II**

R. Rapp, Nat. Phys. 15, 990–991 (2019) QGP: Nat. Phys. 15, 1040–1045 (2019) In-med. *p*: Phys. Rev. Lett. 92, 092301 (2004)

Also measure LMR in BES-II data for 1st time: emission predominantly at phase transition

<u>Outlook: reducing photonic conversion background to improve statistics</u>

Chenliang Jin, Sep. 24, 11:30 Poster: Xianwen Bao, #101

Scientific Program

2. High momentum hadrons and correlations

4. Electromagnetic and electroweak probes

5. Nuclear PDFs, saturation, and early time dynamics

Weizsäcker-Williams photons

direction related to event plane

Hard Probes, 9/23/2024

Physics from STAR at Hard Probes

Pathlength dependence

of energy loss

Suppression of jets with hard-fragmenting charm hadrons

Charmonium sequential suppression

Possibly sizable MPI, string percolation contribution to J/ψ production

Testing limits of models' description of charge flow of hadronization

Reliable temperature extraction of QGP

Influence of photon polarization and spin interference

Isaac Mooney

https://drupal.star.bnl.gov/STAR/presentations

Hard probes at STAR In the 2010s

Hard probes at STAR In the 2020s!

Precision tracking

Forward jets → different x; q v. g

Unbiased centrality/EP determination

DAQ rate: 5 kHz

Etc!

Hard probes at STAR In the 2020s!

Runs 23+25^{1,2}: expected $\sim 3 \times$ increase in statistics for hard probes measurements relative to current Au+Au analyses w/ Run 14 → improved uncertainties & kinematic reach / overlap w/ LHC

Precision tracking

Forward jets → different x; q v. g

Unbiased centrality/EP determination

DAQ rate: 5 kHz

Etc!

Talks

Wei Zhang - Measurements of charmonium production in heavy-ion collisions at STAR - Sep. 24, 9:40

Gabe Dale-Gau - Measurements of Baryon-to-Meson Ratios Inside Jets in Au+Au and p+p Collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ at STAR - <u>Sep 24, 10:50</u>

Andrew Tamis - Exploiting Two- and Three-point Charge-Energy Correlators at STAR as Probes of Jet Evolution - <u>Sep 24, 10:50</u>

Chenliang Jin - Thermal dielectron measurements in Au+Au collisions at BES-II energies with the STAR experiment - <u>Sep. 24, 11:30</u>

Jiaxuan Luo - Measurements of thermal dielectron and QGP temperature in isobar collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV} - \underline{\text{Sep. 24, 11:50}}$

Sooraj Radhakrishnan - Measurement of jet v_1 to study path length dependent jet energy loss in heavy-ion collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ by STAR - Sep 24, 14:00

Brennan Schaefer - Measurement of J/ψ multiplicity dependent production in p+p $\sqrt{s_{NN}} = 510 \text{ GeV}$ with STAR at RHIC - <u>Sep 24, 14:20</u>

Kaiyang Wang - Measurements of photon-induced J/ψ azimuthal anisotropy in isobar collisions at STAR - <u>Sep. 25, 9:00</u>

Youqi Song - Probing hadronization with the charge correlator ratio in pp and Ru+Ru/Zr+Zr collisions $at_{\sqrt{s_{NN}}} = 200 \text{ GeV} \text{ at STAR} - Sep 25, 11:10$

Diptanil Roy - Charm Meson Tagged Jets in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV} - \frac{\text{Sep 25, 11:50}}{\text{Sep 25, 11:50}}$

Posters

Diptanil Roy (for **Tanmay Pani**) -Observing jet quenching using generalized jet angularities in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ from STAR -#97

Isaac Mooney - Event-shape engineering of high-momentum probes in Au+Au collisions - #98

Xianwen Bao - Direct virtual photon production in Au+Au collisions with STAR BES-II data - **#101**

Jeongmyung Kang - Method of semiinclusive jet mass measurement in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV with STAR -#105

Xinbai Li - The measurement of Drell-Söding process through exclusive $\pi^+\pi^$ pair photoproduction in ultraperipheral Au+Au collisions at 200 GeV - #129

Thank you!

Isaac Mooney, Yale / BNL

