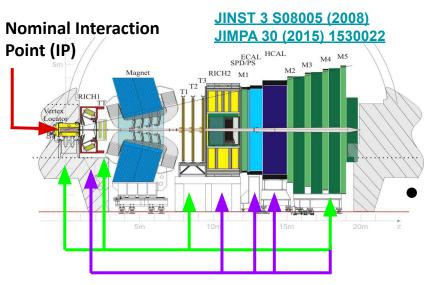
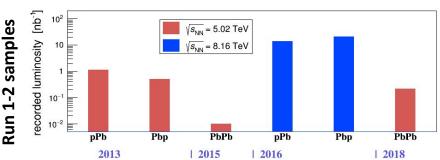


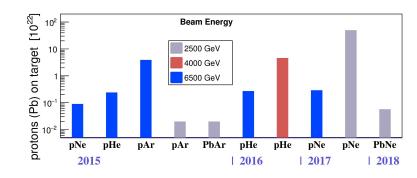
LHCb highlights

Saverio Mariani, on behalf of the LHCb collaboration CERN


LHCb as a heavy-ion and fixed-target experiment

- Clear primary and decay vertex separation, precise tracking, full PID, flexible and fast trigger and a unique acceptance make of LHCb a general-purpose forward detector and a unique facility for heavy-ion physics
 - \rightarrow constraints to nPDFs down to $\alpha \sim 10^{-6}$


LHCb as a heavy-ion and fixed-target experiment



 Clear primary and decay vertex separation, precise tracking, full PID, flexible and fast trigger and a unique acceptance make of LHCb a general-purpose forward detector and a unique facility for heavy-ion physics

 \rightarrow constraints to nPDFs down to $\alpha \sim 10^{-6}$

By injecting gases in LHC, can acquire beam-gas (pA, PbA) data at the highest energy in fixed-target mode and simultaneously with beam-beam

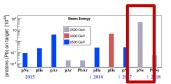
LHCb results at Hard Probes 2024

10 parallel talks:

- Charm production in LHCb fixed-target mode, Oscar Boente Garcia, Mon. 15:00
- Polarization measurement and prospects at LHCb, Youen Kang, Mon 15:40
- Strangeness studies in LHCb fixed-target collisions, Federica Fabiano, Mon. 17:30
- Recent LHCb probes for b-quark hadronization studies, Julie Lane Marie Berkeley, Mon. 18:10
- Charmonium production measurements in large systems at LHCb, Chenzhi Dong, Tue 09:20
- Charmonium production measurements in small systems at LHCb, Cesar Luiz Da Silva, Tue 14:40
- Exotic hadron production in pp and pPb collisions at LHCb, Matt Durham, Tue 15:00
- Prospects for heavy-ion data-taking with the LHCb Upgrade II, Samuel Belin, Tue 14:40
- Ultra-peripheral collisions at LHCb, Amanda Donohoe, Wed. 09:20
- Probing QCD dynamics with jet substructure in LHCb kinematics, Ezra Lesser, Wed. 11:30

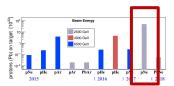
8 posters:

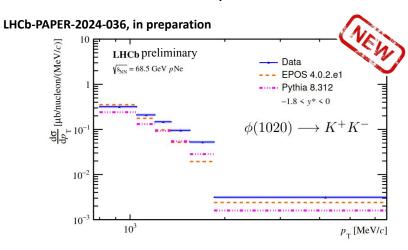
- Bottomonium production measurements at LHCb, Chenzhi Dong
- Exploring hadronization with heavy-flavour jets at LHCb, Matt Durham
- Flow and correlation measurements at LHCb, Zhengchen Lian
- Helium identification and production at LHCb, Julie Lane Marie Berkeley
- Recent studies of open-charm production at LHCb, Yiheng Luo
- SMOG2: a high-density gas target at the LHCb experiment, Federica Fabiano
- Strangeness studies in LHCb heavy-ion collisions, Jianqiao Wang
- Studies of nucleon structure at LHCb, Cesar Luiz da Silva


reflecting HP, representation in showing The highest

st

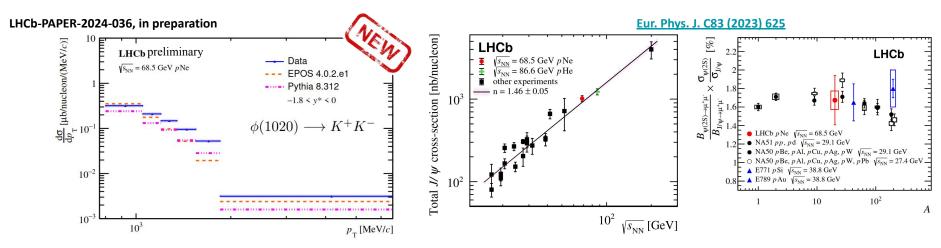
Saverio Mariani

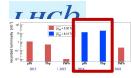

Strange and charm physics in fixed-target collisions

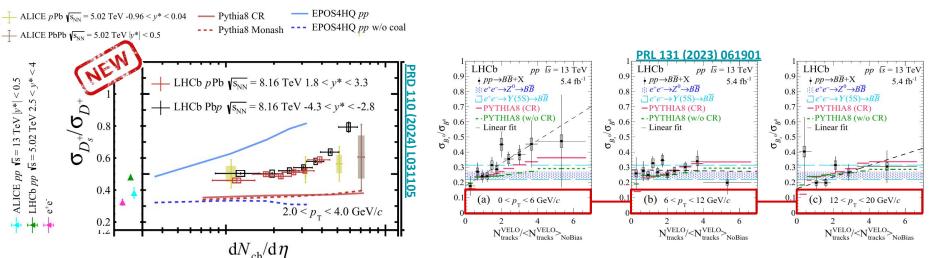

- pNe data with $\sqrt{s_{NN}}$ = 68.5 GeV, intermediate to SpS and RHIC top energy \rightarrow access to poorly explored high- α at moderate $Q^2 \Rightarrow$ unique inputs to models!
- **Discrimination of Quark Gluon Plasma from Cold Nuclear Matter effects** require precise measurements in different collision systems and c.m. energies

Strange and charm physics in fixed-target collisions

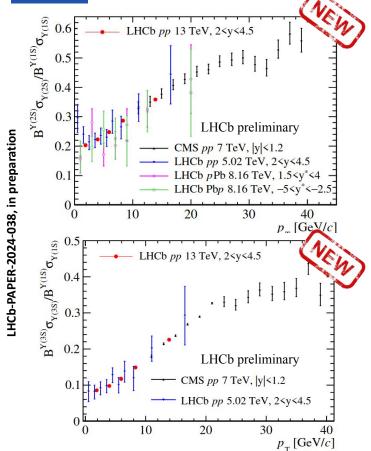
- pNe data with $\sqrt{s_{NN}} = 68.5$ GeV, intermediate to SpS and RHIC top energy \rightarrow access to poorly explored high- α at moderate $Q^2 \Rightarrow$ unique inputs to models!
- **Discrimination of Quark Gluon Plasma from Cold Nuclear Matter effects** require precise measurements in different collision systems and c.m. energies


 Models found to underestimate φ production at this energy → good constraining power for strangeness in phenomenological models

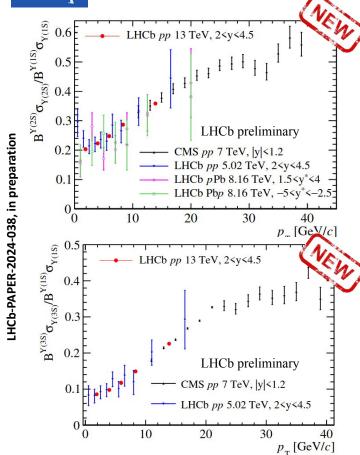

Strange and charm physics in fixed-target collisions

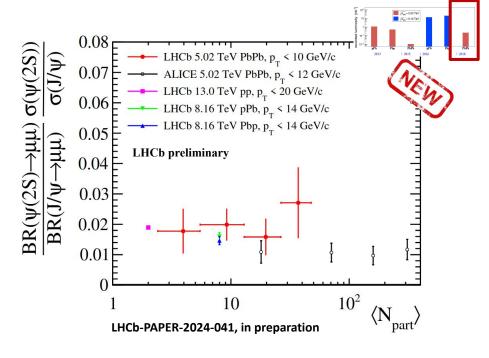

- pNe data with $\sqrt{s_{NN}} = 68.5$ GeV, intermediate to SpS and RHIC top energy \rightarrow access to poorly explored high- α at moderate $Q^2 \Rightarrow$ unique inputs to models!
- **Discrimination of Quark Gluon Plasma from Cold Nuclear Matter effects** require precise measurements in different collision systems and c.m. energies

- Models found to underestimate φ production at this energy → good constraining power for strangeness in phenomenological models
- Better precision wrt previous experiments for J/ψ,
 but statistically dominated for heavier probes
- Motivates fixed-target system upgrade (SMOG2)


Strangeness enhancement in charm and beauty

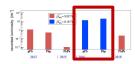
- By studying charm and beauty particle yields as a function of multiplicity, observed clear indications of strangeness enhancement in both the charm (left) and beauty (right) sectors, especially at low transverse momenta
- Final state effects such as coalescence are important at low p_T and high multiplicity, while the pure fragmentation limits from *ee* collisions are recovered elsewhere

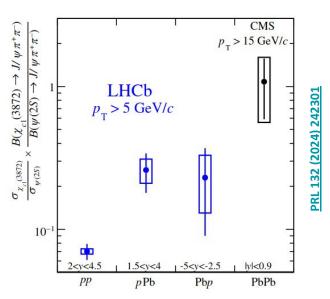

Recent studies on charmonia and bottomonia



- New LHCb results for Y(nS) production in *pp* as a function of multiplicity confirms **sequential suppression pattern**
- Comparison in line with previous LHCb and CMS results, with remarkably small uncertainties (smaller than the data points)

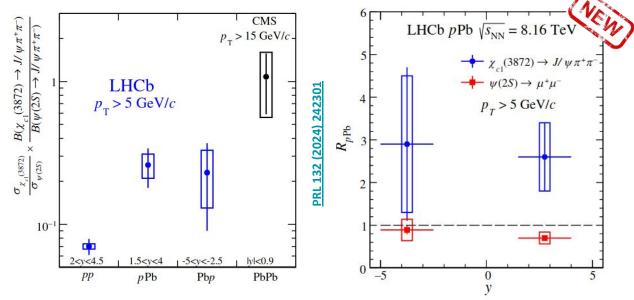
Recent studies on charmonia and bottomonia





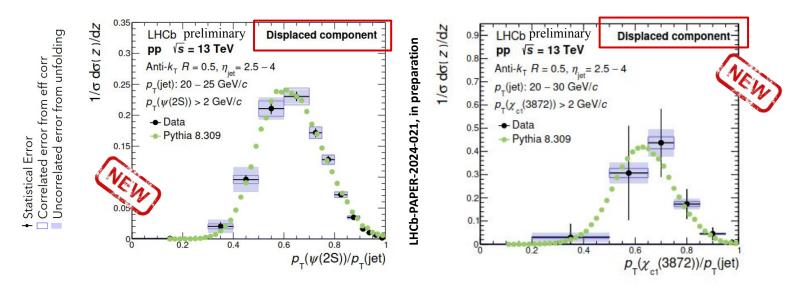
- Charmonia measurement also performed in a large system
- Statistical uncertainty on $\psi(2s)$ dominant \rightarrow will be extended and improved with Run3 data

Exotic hadrons in pp and pPb collisions



- Exotic multi-quark states also provide a unique view on hadronization mechanisms: does X(3872) have a compact, a molecular or a hadrocharmonium structure?
- X enhancement wrt $\psi(2s)$, despite ~cancellation of initial state effects, hints at a different interaction with the medium \rightarrow is this X enhancement or $\psi(2s)$ suppression?

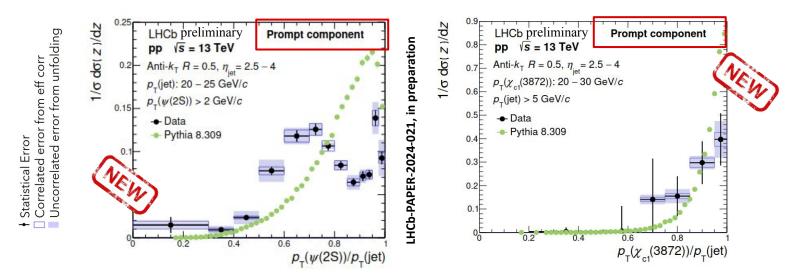
Exotic hadrons in pp and pPb collisions



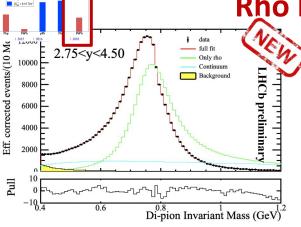
- Exotic multi-quark states also provide a unique view on hadronization mechanisms: does X(3872) have a compact, a molecular or a hadrocharmonium structure?
- X enhancement wrt $\psi(2s)$, despite ~cancellation of initial state effects, hints at a different interaction with the medium \rightarrow is this X enhancement or $\psi(2s)$ suppression?
- Nuclear modification factor shows X enhancement → coalescence dominating over breakup?

Fragmentation in jets

• X(3872) and $\psi(2s)$ also reconstructed within jets to learn more about their production mechanism

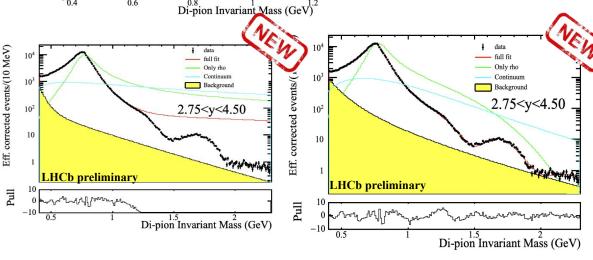


• Displaced (from b-decays) distributions of $\psi(2s)$ and X(3872) similar and well described by Pythia


Fragmentation in jets

• X(3872) and $\psi(2s)$ also reconstructed within jets to learn more about their production mechanism

- Displaced (from b-decays) distributions of $\psi(2s)$ and X(3872) similar and well described by Pythia
- Two distinct components are found for prompt production, especially for $\psi(2s)$ at low p_T , not reproduced by Pythia
- Further development of theoretical models is needed to explore the nature of the two components


Rho lineshape in UPC PbPb collisions

- Very clean sample of UPC di-pions selected by requiring no additional activity in the detector and with PID vetoes
- Fit model by H1 preferred wrt the STAR one in modelling the distribution and the ρ ω interference

Rho lineshape in UPC PbPb collisions

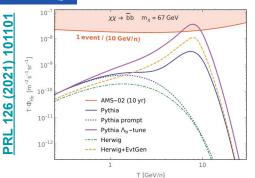
- Very clean sample of UPC di-pions selected by requiring no additional activity in the detector and with PID selections
 - Fit model by H1 preferred wrt the STAR one in modelling the distribution and the ρ - ω interference

LHCb preliminar

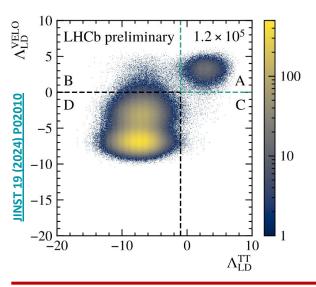
Background

- ...but extrapolating shows the model is clearly not correct
- **Unambiguous additional** resonance, confirming previous observation by ALICE and STAR
- Fit results consistent with PDG ρ' particle
- Cross-sections and p_T spectrum being measured

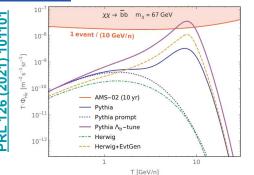
LHCb-PAPER-2024-042, in preparation


Eff. corrected events/(10 Me

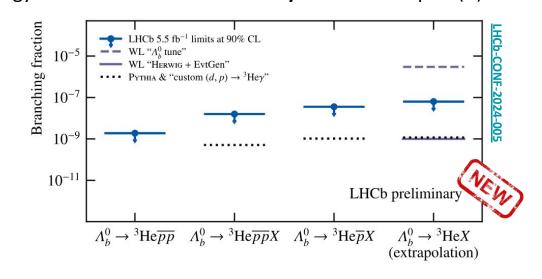
Pull

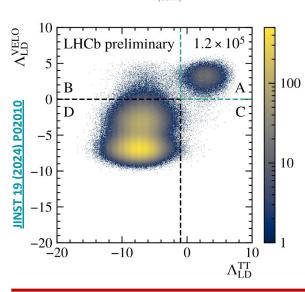

 $2.\overline{75} < y < 4.50$

Nuclei production and identification at LHCb



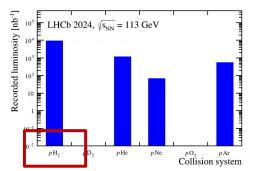
- Discussion ongoing about a **possible explanation of measured AMS He** flux due to Λ_b -> HeX decays (if BR ~ O(10^{-6})) PRC 108 (2023) 024903
- Innovative **He identification technique** via discriminators built from energy loss in LHCb detectors → **very clean** He samples (A)

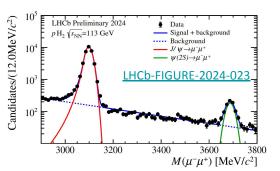




Nuclei production and identification at LHCb

- Discussion ongoing about a possible explanation of measured AMS He flux due to Λ_b -> HeX decays (if BR \sim O(10⁻⁶)) PRC 108 (2023) 024903
- Innovative He identification technique via discriminators built from energy loss in LHCb detectors → very clean He samples (A)

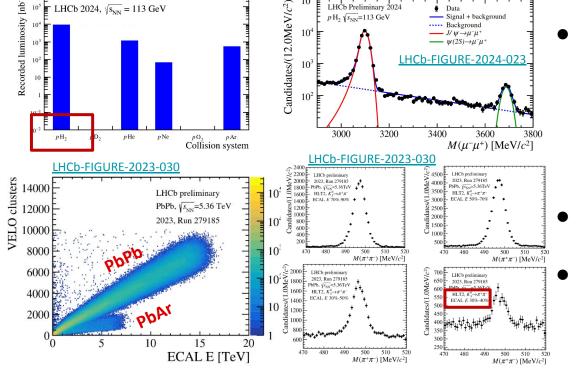

 $\Lambda_b^0 \to {}^3{\rm He}\overline{pp}$ decay fully reconstructed and extrapolated limits to inclusive channels significantly restricts He abundance in cosmic rays



New possibilities with the LHCb Upgrade I

 Now operating at x5 luminosity in pp wrt Run 2, with increased granularity, a software-only real-time data processing and a continuous beam-gas data-taking (SMOG2)

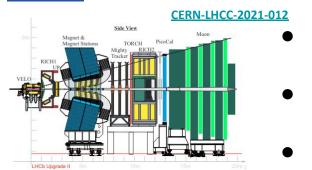
Large pH₂ to pAr datasets collected,
 unique prospects for soft and hard
 probes at a unique energy range



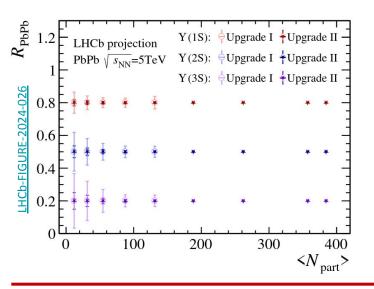
Saverio Mariani

New possibilities with the LHCb Upgrade I

 Now operating at x5 luminosity in pp wrt Run 2, with increased granularity, a software-only real-time data processing and a continuous beam-gas data-taking (SMOG2)



Large pH₂ to pAr datasets collected, unique prospects for soft and hard probes at a unique energy range


- Accessing full centrality PbA (SMOG2) and up to semi-central PbPb
- Several optimisations put in place for 2024 data-taking, with **+70%** instantaneous luminosity wrt 2023

... and even more with the LHCb Upgrade II

- Scoping scenarios recently submitted, with support for **full centrality PbPb reach** included by design
- Include tracking stations in the magnet, increasing acceptance down to 50 MeV p_T
- Addition of timing improves LHCb capabilities for nuclei ID

- Unique prospects recently discussed in a workshop with the theoretical community: from bulk physics to heavy-flavour, jets, high-statistics of exotica and electromagnetic probes, CEP and UPC
- In parallel, R&D ongoing to polarise the injected gas and open a new gate with the **study of polarised collisions at LHC** (highly complementary to EIC)

Xiv;1901.08002 L+C

Conclusions

- LHCb has a unique and continuously expanding heavy-ion and fixed-target programme
- Now embracing soft and hard probes production in small to large collisions systems, hadronization studies, UPC, collectivity and (hyper)nuclei production. New ideas and interested people keep arriving
- Just started to exploit the Upgrade I detector, i.e. semi-central PbPb collisions and high-statistics pA and PbA datasets at a unique energy scale
- **Upgrade II is on the horizon**, offering no centrality limitations, precise timing for nuclei identification and possibly a polarised fixed-target programme
- Stay tuned, LHCb will keep surprising!

Thanks for your attention!

Follow up? saverio.mariani@cern.ch

LHCb results at Hard Probes 2024

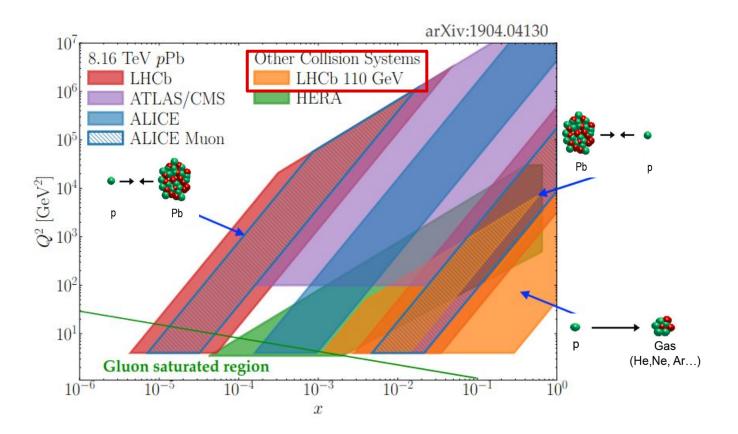
The highest LHCb representation in HP, reflecting our increasingly rich and attractive programme

10 parallel talks:

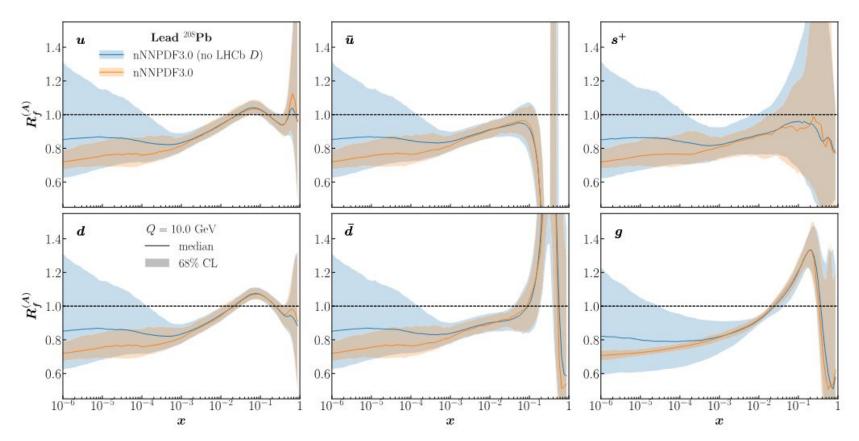
- Charm production in LHCb fixed-target mode, Oscar Boente Garcia, Mon. 15:00
- Polarization measurement and prospects at LHCb, Youen Kang, Mon 15:40
- Strangeness studies in LHCb fixed-target collisions, Federica Fabiano, Mon. 17:30
- Recent LHCb probes for b-quark hadronization studies, Julie Lane Marie Berkeley, Mon. 18:10
- Charmonium production measurements in large systems at LHCb, Chenzhi Dong, Tue 09:20
- Charmonium production measurements in small systems at LHCb, Cesar Luiz Da Silva, Tue 14:40
- Exotic hadron production in pp and pPb collisions at LHCb, Matt Durham, Tue 15:00
- Prospects for heavy-ion data-taking with the LHCb Upgrade II, Samuel Belin, Tue 14:40
- Ultra-peripheral collisions at LHCb, Amanda Donohoe, Wed. 09:20
- Probing QCD dynamics with jet substructure in LHCb kinematics, Ezra Lesser, Wed. 11:30

8 posters:

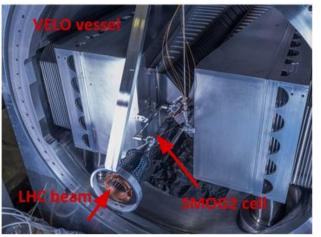
- Bottomonium production measurements at LHCb, Chenzhi Dong
- Exploring hadronization with heavy-flavour jets at LHCb, Matt Durham
- Flow and correlation measurements at LHCb, Zhengchen Lian
- Helium identification and production at LHCb, Julie Lane Marie Berkeley
- Recent studies of open-charm production at LHCb, Yiheng Luo
- SMOG2: a high-density gas target at the LHCb experiment, Federica Fabiano
- Strangeness studies in LHCb heavy-ion collisions, Jianqiao Wang
- Studies of nucleon structure at LHCb, Cesar Luiz da Silva


this talk, selection interest showing Just

Backup



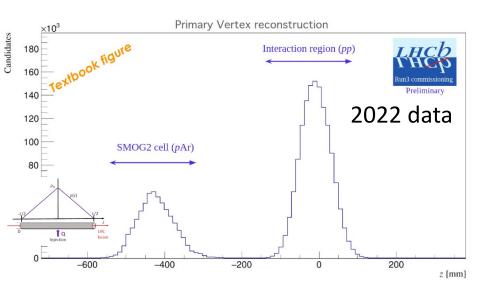
LHCb acceptance for HI and fixed-target

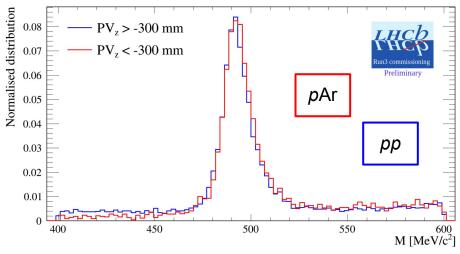


LHCb power in constraining nPDFs

The SMOG2 system

- SMOG2: gas confinement in a cell upstream of the LHCb IP (z € [-541, -341] mm), installed in 2020
 - Cell made up of two halves, to be opened and closed together with the VELO
 - Up to x100 density wrt SMOG for the same gas flow
 - Simultaneous beam-beam beam-gas data-taking
 - Heavy noble (Kr, Xe) and non-noble gases (H₂, D₂, O₂,
 N₂ ...) can be injected


New Gas Feed System


- Precise flow control → direct lumi measurement
- More gas recipients → fast gas replacement

The SMOG2 system (II)

- SMOG2 working simultaneously and continuously with beam-beam operations,
 collecting two datasets in two different collision systems at two different cm energies
- Reconstruction performance and momentum resolution similar between pp and pA

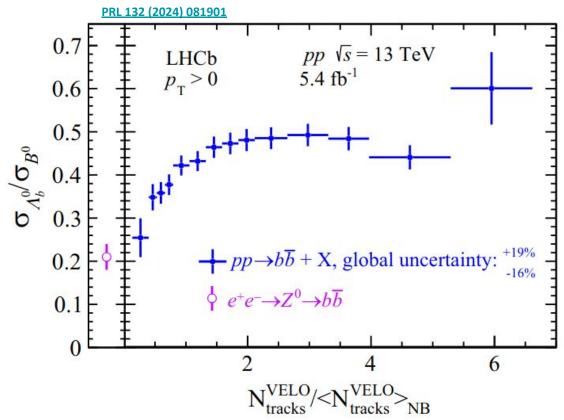
LHCP

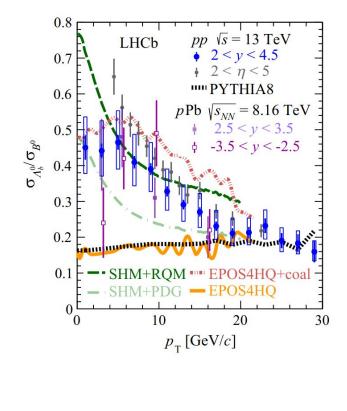
Physics opportunities with the SMOG2 system

• The wider choice of gases, the increase in injected pressure and the simultaneous beam-beam and beam-gas data-taking open new possibilities

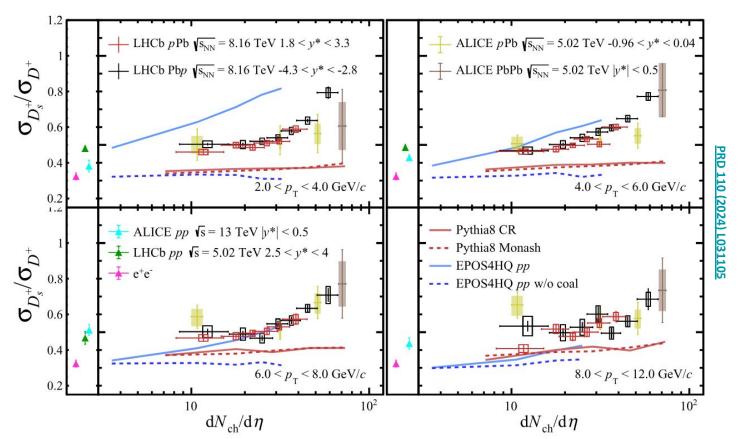
LHCb-PUB-2018-015	SMOG largest sample p-Ne@68 GeV	SMOG2 example p-Ar@115 GeV
Integrated luminosity	$\sim 100 \; {\rm nb}^{-1}$	100 pb^{-1}
syst. error on J/ψ x-sec.	6-7%	2-3 %
J/ψ yield	15k	35M
D^0 yield	100k	350M
$\Lambda_{\rm c}$ yield	1k	3.5M
$\psi(2S)$ yield	150	400k
Y(1S) yield	4	15k
Low-mass (5 $< M_{\mu\mu} < 9~{ m GeV}/c^2$) Drell-Yan yield	5	20k

 Precision studies of charm sequential suppression, bottomonia, low-mass DY

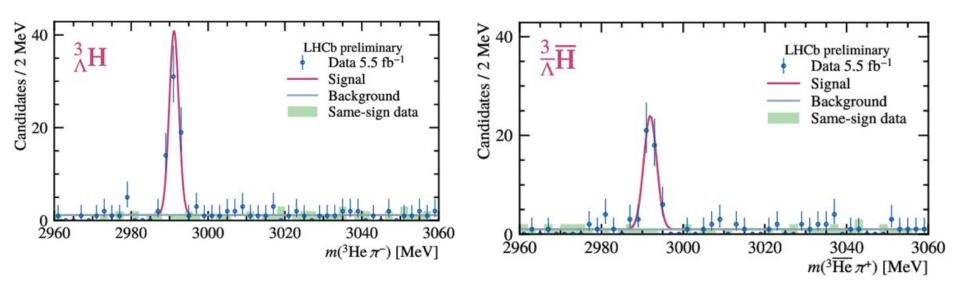

- Detailed study of the high-x parton PDFs and probes for TMDs
- High-statistics ultra-peripheral ρ , ω , charmonia and bottomonia states with **high-Z targets**
- Extension of the programme of cosmic rays interest: antimatter production in the galaxy
 with H₂, D₂, He; atmospheric showers with N₂, O₂

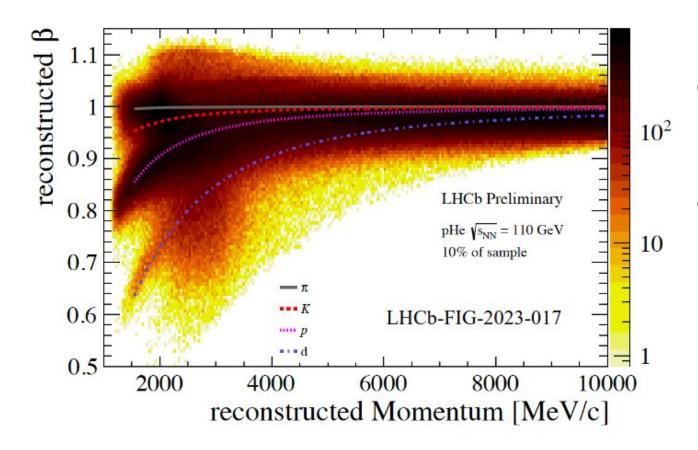


A unique laboratory for many and diverse QCD studies at the LHC!

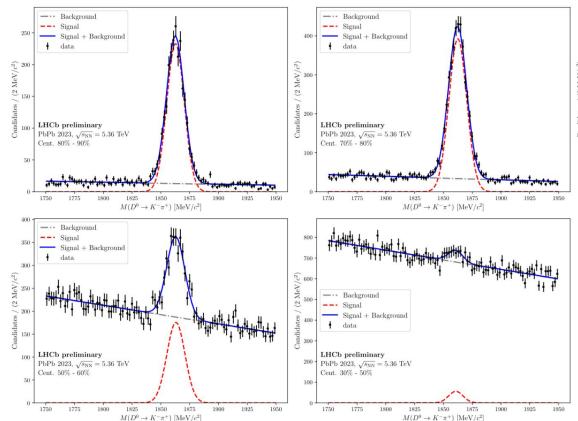


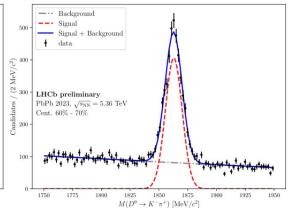
Enhanced production of Λ_b baryons




(Anti)hypertriton studies at LHCb

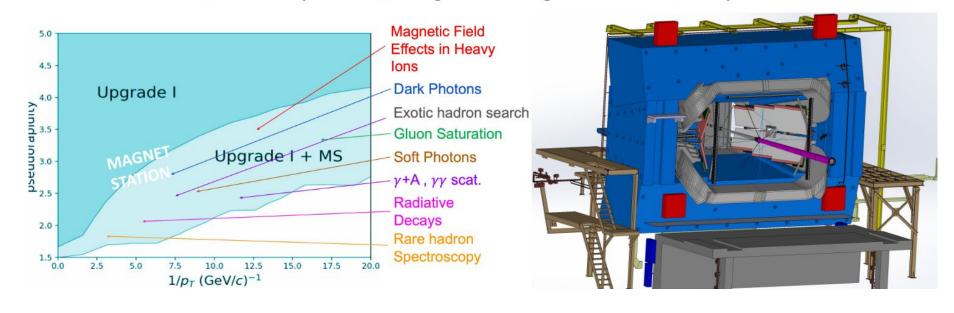
 Very clean sample of selected (anti)Helium nuclei + VELO pointing resolutions → very clean anti-hypertriton peaks!


Deuteron identification technique

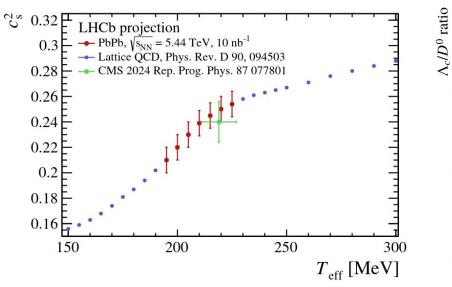


- With SMOG pHe data, deuteron nuclei identified via LHCb TOF capabilities
- First measurement of d production in pHe collisions, largely impactful for the searches CR

Charm mass peak in PbPb 2023



- Despite the challenging 2023 PbPb conditions (VELO open, no UT), D0 at larger centralities wrt Run 2 already observed!
- Very good prospects for 2024


Magnet stations

- Scintillating bar tracker for very soft particles at LHCb, start installation LS3
- Expands soft physics channels previously unreachable at the LHC.
- Allows access to very low x, Q^2 region where gluon saturation may exist in nuclei.

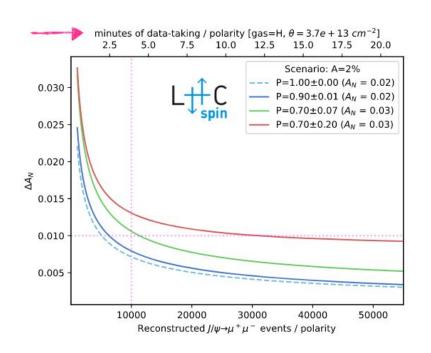
Some other opportunities for LHCb UII

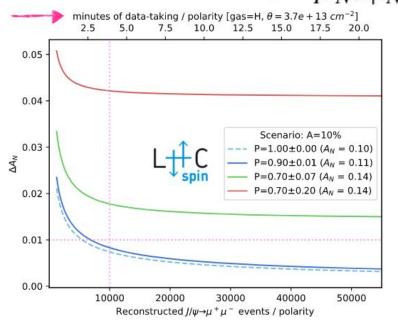
bulk physics → speed of sound

open charm baryon-to-meson ratios

Prospects for LHCSpin (I)

Channel	Events / week	Total yield
$J/\psi o \mu^+\mu^-$	1.3×10^{7} !!	1.5×10^{9}
$D^0 o K^-\pi^+$	6.5×10^{7}	7.8×10^{9}
$\psi(2S) \to \mu^+\mu^-$	2.3×10^{5}	2.8×10^{7}
$J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ (DPS)	8.5	1.0×10^{3}
$J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^- \text{ (SPS)}$	2.5×10^{1}	3.1×10^{3}
Drell Yan $(5 < M_{\mu\mu} < 9 \text{ GeV})$	7.4×10^{3}	8.8×10^{5}
$\Upsilon ightarrow \mu^+ \mu^-$	5.6×10^{3}	6.7×10^{5}
$\Lambda_c^+ o pK^-\pi^+$	1.3×10^{6}	1.5×10^{8}


Unique prospects for TMD models!


- By scaling 2022 performance (during commissioning) and assuming Run3 beam, 120 weeks
 of data-taking with 84h/week and expected LHCSpin areal density (3.7 10¹³/cm²)
- Very large statistics of fully-reconstructed and selected events!
- Lighter states also fine with the jet target option (x0.4 factor to be considered), challenging to get double J/ψ production

Prospects for LHCSpin (II)

$$A_N = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

Can reach very precise measurement in a few minutes of data-taking!