Open Heavy Flavor: Theory

The 12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (HP2024), Nagasaki, Japan

Weiyao Ke Central China Normal University September 25, 2024

Physics of heavy quarks in a hot plasma

- $m_b = 4.2 \text{ GeV} \gg 3T$ $m_c = 1.3 \text{ GeV} \gtrsim 3T.$
- Flavor-labeled energetic probes.
- Sensitive to non-eq.evolution.
- "Pull out" medium information at hadronization.

Heavy flavor hard production

The large mass allows perturbative calculation of HQ production. In practice, not easy.

Fig. from M. Pennisi's talk \square Better description for *b*.

EPOS4HQ, talk by P. Gossiaux \square Reasonable agreement with FONLL. Also works for $D - \overline{D}$ correlations.

Heavy quarks in deconfined environments

Heavy quarks in equilibrium

Progresses from lattice QCD in understanding HQ dynamics near equilibrium $(\frac{1}{2}M\langle v^2\rangle = \frac{3}{2}T + \cdots)$

$$\frac{1}{3}\frac{d}{dt}\langle\delta p^{2}\rangle \equiv \kappa = \kappa_{E} + \frac{T}{M}\kappa_{B} + \mathcal{O}\left(\frac{T^{2}}{M^{2}}\right)$$
$$\frac{1}{6}\frac{d}{dt}\langle\delta x^{2}\rangle \equiv D_{s} = \frac{2T^{2}}{\kappa}\frac{\langle p_{Q}^{2}\rangle}{3MT}$$

2+1 flavor calculation at $m_{\pi} = 320$ MeV with mass dependence to first order in $\frac{T}{M}$. H. Shu's talk Friday \square [HotQCD, PRL130(2023)231902 & PRL132(2024)051902]

For phenomenology, we need real-time tools for non-equilibrium evolution.

Consider $p_Q \sim M$ and try Boltzmann equation:

$$\underbrace{\left(\partial_t + v \cdot \nabla_x\right)}_{\text{free stream}} f_Q(t, x, p) = \underbrace{\mathcal{C}_{2\leftrightarrow 2}[f_Q, f_{q,g}]}_{\text{elastic}} + \underbrace{\mathcal{C}_{2\leftrightarrow 3}[f_Q, f_{q,g}]}_{\text{inelastic}} + \cdots$$

A key assumption: good quasi-particles $\tau_{int} \ll \tau_{life time}$. heavy quarks (\checkmark), light partons (??).

The Ads/CFT approach: heavy quarks motion under non-perturbative drags. Extension to finite& high momentum, see JD Plessis's talk.

Langevin dynamics of slow-moving HQ

Coarse-grain the Boltzmann equation in the small momentum-transfer limit $(q \ll p \sim M)$ \Rightarrow Fokker-Planck equation \Leftrightarrow Stochastic Langevin dynamics

$$egin{aligned} ec{x}(t+\Delta t) &= ec{x}(t)+ec{v}\Delta t \ ec{p}(t+\Delta t) &= (1-\eta_D\Delta t)ec{p}(t)+ec{\xi}\Delta t. \ &\langle \xi_i\xi_j
angle &= \Delta t^{-1}\left(P_{T,ij}\kappa_T+P_{L,ij}\kappa_L
ight) \end{aligned}$$

- No longer requires medium quasi-particles.
- Flexible parametrization of the interaction, good for phenomenological extraction of κ , η_D from low- p_T data.

Langevin dynamics of slow-moving HQ

Coarse-grain the Boltzmann equation in the small momentum-transfer limit $(q \ll p \sim M)$ \Rightarrow Fokker-Planck equation \Leftrightarrow Stochastic Langevin dynamics

$$egin{aligned} ec{x}(t+\Delta t) &= ec{x}(t)+ec{v}\Delta t \ ec{p}(t+\Delta t) &= (1-\eta_D\Delta t)ec{p}(t)+ec{\xi}\Delta t. \ &\langle \xi_i\xi_j
angle &= \Delta t^{-1}\left(P_{T,ij}\kappa_T+P_{L,ij}\kappa_L
ight) \end{aligned}$$

- No longer requires medium quasi-particles.
- Flexible parametrization of the interaction, good for phenomenological extraction of κ , η_D from low- p_T data.

An interesting development: from Fokker-Planck to hydrodynamics

 $N^{\rho}(x) = \int_{p} p^{\rho} / p^{0} f_{Q}(x, p)$. Fokker-Planck \Rightarrow second-order viscous hydrodynamics for charm current

$$\nabla_{\rho} N^{\rho} = 0, \quad N^{\rho} = \frac{n_{Q}(T, \mu)u^{\rho} + \nu^{\rho}}{dt},$$
$$\frac{d\nu^{\rho}}{dt} = -\frac{\nu^{\rho} + \kappa \partial^{\rho}(\mu/T)}{\tau_{R}}$$

- Don't specify "which particle carries charmness"! Couple realistic charm initial production & evolution with statistical hadronization.
- Assumption: kinetic relaxation before hadronization.

[Capellino et al., PRD106(2022)034021 & PRD108(2023)116011] F. Capellino's talk Monday C

Early stage (first 1fm/c) is transient, but the medium has a larger energy scale. A simple estimates using Bjorken expansion ($\kappa \sim T_{\rm eff}^3 \propto 1/\tau$) shows

$$\langle \delta p^2
angle (au_1, au_2) = \int_{ au_1}^{ au_2} \kappa(au) d au \propto \ln rac{ au_2}{ au_1}.$$

For example, a sensitivity study of early-stage heavy quark diffusion with an effective temperature Mayank Singh's talk I

Transport at the early stages

At earlier stage, system is highly isotropic & away from kinetic and chemical equilibrium. Diffusion coefficients evaluated from QCD Effective Kinetic Theory.

QCD-EKT, pure gluon system [K. Boguslavski et al. PRD109(2024)014025]

 $\mathsf{QCD}\text{-}\mathsf{EKT}$ with gluons & quarks

[X. Du arXiv:2306.02530]

Transport at the early stages

At even earlier stage, the system is still a colorful coherent field, i.e., glasma. κ has been estimated by simulating Wong's equations in a Glasma background. [D. Avramescu et al. 2409.10564 & 2409.10565] **D. Avramescu's talk on Tuesday** No *e*-loss, HQ ride on the gauge field with color rotation.

HF hadronization in an environment

Heavy quark hadronization mechanisms

 $\begin{array}{c} c \\ \hline d \\ \hline Medium \\ \hline \\ Important feed down \\ from excited states \\ \end{array}$

- Energetic system mainly undergoes fragmentation $(p_Q + p_{q \text{ med}})^2 \sim 6E_Q T_{\text{eff}} + M^2 + m^2 \gg (M_h + m_{\pi})^2.$ A large phase space for string breaking dynamics.
- $(p_Q + p_{q \text{ med}})^2 \gtrsim M_h^2$, no phase-space for fragments, recombine. HF picks up **medium chemistry.**

Heavy quark hadronization mechanisms

- Energetic system mainly undergoes fragmentation $(p_Q + p_{q \text{ med}})^2 \sim 6E_Q T_{\text{eff}} + M^2 + m^2 \gg (M_h + m_{\pi})^2.$ A large phase space for string breaking dynamics.
- $(p_Q + p_{q \text{ med}})^2 \gtrsim M_h^2$, no phase-space for fragments, recombine. HF picks up **medium chemistry.**

Taken from J. Berkey's talk 🖒

Heavy quark hadronization mechanisms

Taken from J. Berkey's talk 🗗

- Energetic system mainly undergoes fragmentation $(p_Q + p_q \text{ med})^2 \sim 6E_Q T_{\text{eff}} + M^2 + m^2 \gg (M_h + m_\pi)^2.$ A large phase space for string breaking dynamics.
- $(p_Q + p_{q \text{ med}})^2 \gtrsim M_h^2$, no phase-space for fragments, recombine. HF picks up **medium chemistry.**

• In AA, recombination also picks up radial flow.

Collaborative progresses in modelling

Left & middle: Jiaxing Zhao et al. 2311.10621.

Right: HF-in-jet FF, talks by K. Klein[™] & D. Roy[™]

 Theoretical community aims for better constraints on fragmentation function *c* → *HF* & *g* → *HF* and understanding differences in coalescence schemes.

Collaborative progresses in modelling

Left & middle: Jiaxing Zhao et al. 2311.10621.

Right: HF-in-jet FF, talks by K. Klein[™] & D. Roy[™]

- Theoretical community aims for better constraints on fragmentation function $c \rightarrow HF \& g \rightarrow HF$ and understanding differences in coalescence schemes.
- Progress from the HEFTY collaboration: combine resonance recombination model [Ravagli, Rapp PLB655(2007)126, Ravagli, van Hees, Rapp PRC79(2009)064902] with radiation-improved partonic transport [LIDO, Ke, Xu, Bass PRC100(2019)064911].

[Y. Dai et al. 2402.03692] M. He's talk on Tuesday $\[Colored]$ Statistical Hadronization + Conservation of all U(1). Grand canonical ensemble \Rightarrow canonical ensemble.

- Charges produced in pairs. Heavy charged pairs disfavored in neutral system \Rightarrow canonical suppression $\frac{Z(Q_{\text{tot}} - q_h, V)}{Z(Q_{\text{tot}}, V)}$, stronger for smaller system.
- Importance of unknown *b*-hadron states!

Mass effects of energetic heavy quarks (where radiation dominants)

Mass-dependent energy loss at large p_T

HF is a natural tool for mass & color-charge dependence of ΔE .

Mass in the quark propagator suppresses collinear emission

$$rac{1}{\mathbf{k}^2}
ightarrow rac{1}{\mathbf{k}^2 + x^2 M^2} = rac{1}{\mathbf{k}^2} rac{ heta_g^2}{ heta_g^2 + heta_D^2}$$

Dead cone physics is more complicated in the medium.

One expects $\Delta E_g > \Delta E_q \gtrsim \Delta E_c > \Delta E_b$. Verifying the hierarchy from a data driven approach [W. Xing et al. PLB850(2024)138523] G.-Y. Qin, Wednesday

Dead cone effects in jet substructure

[E. Craft et al. 2210.09311]

EEC provides another way to scan through energy scales in jets

$$\Sigma_n(heta) = rac{\sum_{ ext{jet}}}{N_{ ext{jet}}} \sum_{ij} \delta(heta - R_{ij}) \left[rac{E_i}{E_{ ext{ref}}}
ight]^n \left[rac{E_j}{E_{ ext{ref}}}
ight]^n$$

Dead cone angles $\theta_D = M/E$ are expected to manifest in the θ scan.

Dead cone effects in jet substructure

See A. Nambrath's talk

EEC provides another way to scan through energy scales in jets

$$\Sigma_n(heta) = rac{\sum_{ ext{jet}}}{N_{ ext{jet}}} \sum_{ij} \delta(heta - R_{ij}) \left[rac{E_i}{E_{ ext{ref}}}
ight]^n \left[rac{E_j}{E_{ ext{ref}}}
ight]^n$$

Dead cone angles $\theta_D = M/E$ are expected to manifest in the θ scan.

HF EEC in central Pb+Pb collisions

Heavy flavor jet EEC from Linear-Boltzmann Transport (LBT) simulation [W. Xing et al. 2303.12485] See Wenjing Xing's talk on Tuesday

Mass effects is much more than the "dead cone"

$$\frac{dP_{gQ}^{\text{vac}}}{dxd^2\mathbf{k}} = \frac{\alpha_s C_F}{2\pi^2} \frac{p_{q \to qg}(x)\mathbf{k}^2 + x^3 M^2}{(\mathbf{k}^2 + x^2 M^2)^2}$$

- × medium
- Terms proportional to M^2 from helicity-flipping.
- Medium corrections to the two terms are different! New insights to medium effects.
- Mass also provides novel coupling to flows u^µ, manifest in calculating soft-gluon emission spectra. Talk by C. Salgado ♂.

$$\hat{q}
ightarrow \hat{q}_{ij} = \hat{q} \left(1 - \frac{M^2}{2E^2} u_{\perp}^2 \right) \delta_{ij} - \frac{M^2}{E^2} u_{\perp,i} u_{\perp,j}$$

Not all charms are produced in the early stage

Energetic $g \to c\bar{c}$ delayed by Lorentz boost, comes at characteristic large scale $\frac{k^2+m^2}{\chi(1-\chi)}$.

Med.-induced $g \to c \bar{c}$ brings more c in jet. See U. Wiedemann's talk ${\ensuremath{ \ C \ }}$.

Summary and Prospectives

- Open heavy flavors continue to deepen the understanding of QGP: charge diffusion, chemical composition, spatial and temporal evolution of fireball, etc.
- Its mass/multi-scale nature requires different strategies for specific problems
 - Early-time vs late time.
 - Relativistic vs non-relativistic.
 - Fragmentation vs coalescence.
 - Near & far from equilibrium.
 - Collisions vs radiation, strong/weak coupling, etc
- Very rich physics, high complexity. Need theory collaborations to make progress.

Summary and Prospectives

HF in jets, substructures & EEC. Freenentation The Fin Loop ععف Μ $\ll d$ Hadronization Early stage: HQ in 000 coherent fields, and Μ over-occupied system. ٧S HF chemistry a from AA to pp. Coalescence Zcompeteing Drag & diffusion $\tau_h \sim \tau_{\rm frz}$ 3MTToward a hydro EFT for charm.

Thank you! Questions?