Quarkonia Theory From Open Quantum System to Classical Transport

InQubator for Quantum Simulation

Xiaojun Yao

InQubator for Quantum Simulation University of Washington

Hard Probe 2024, Nagasaki, September 25, 2024

What unique properties of QGP are we probing via quarkonia?

What Unique Properties of QGP Are We Probing?

Experimental data on R_{AA} , v_n (cold/hot medium effect, feeddown)

Focus on data at low p_T

- Nonrelativistic
- QGP affects $QQ \rightarrow$ quarkonia but not production of $Q\bar{Q}$

At high p_T : medium effect on $g \rightarrow c\bar{c}$: Wiedemann (Tu 3:55pm) Brewer (Wed 11:10am)

 J/ψ production within jet: Zhang (Wed 10:50am)

What Unique Properties of QGP Are We Probing?

Experimental data on R_{AA} , v_n (cold/hot medium effect, feeddown)

Focus on data at low p_T

Nonrelativistic

Open quantum system Effective field theory

Yao, Mehen, 2009.02408

Probe

Chromoelectric correlator

- Novel transport coefficients
- New type gluon distribution

Open Quantum System

In certain limits, evolution equation is Lindblad equation (Markovian, non-unitary)

$$\frac{\mathrm{d}\rho_{Q\bar{Q}}(t)}{\mathrm{d}t} = -i[H, \rho_{Q\bar{Q}}(t)] + \sum_{ij} D_{ij} \left(L_i \rho_{Q\bar{Q}}(t) L_j^{\dagger} - \frac{1}{2} \{ L_j^{\dagger} L_i, \rho_{Q\bar{Q}}(t) \} \right)$$

Semiclassical limits: Boltzmann equations (rate equation, Fokker-Planck/Langevin equation)

$$\frac{\mathrm{d}f}{\mathrm{d}t} = C[f] \qquad \qquad \text{Reviews}$$

- OQS: treat QQ pairs as an open quantum system interacting with QGP
 - $\rho_{Q\bar{Q}}(t) = \text{Tr}_{QGP}[U(t)\rho_{\text{tot}}(0)U^{\dagger}(t)]$

Akamatsu, Rothkopf, 1110.1203; Akamatsu, 1403.5783

of OQS for quarkonia: Rothkopf, 1912.02253; Akamatsu, 2009.10559 Sharma, 2101.04268; Yao, 2102.01736

Separation of Energy Scales

Medium case depends on where T fits

• Quantum optical limit: low T

Transitions between levels

unbound

- bb $C\overline{C}$ heavy quark mass 4.2 GeV 1.3 M_V inverse of quarkonium size r^{-1} 0.7 1.3 GeV
 - quarkonium binding energy 0.5 0.5 GeV
 - Quantum Brownian motion: high T Resolvingpower of QGP Decoherence of $Q\bar{Q}$ pair, "diffusion"

Separation of Energy Scales and Physical Scenarios

Hierarchy of energy scales	EFT	Quantum Description	Classical Description
$M \gg T \gg M v^2, \Lambda_{\rm QCD}$	NRQCD	Lindblad (quantum	Diffusion equation
	$\alpha_s(T)$ small	Brownian motion)	(semiclassical limi
$M \gg Mv \gg T, \Lambda_{\rm QCD}$	pNRQCD	Lindblad (quantum	
$T \gg Mv^2$, expand Mv^2/T	rT small	Brownian motion)	
$M \gg Mv \gg T, \Lambda_{\rm QCD}$ No expansion of Mv^2/T	pNRQCD rT small		Boltzmann equatio (quantum optical a semiclassical limit

Various Calculation Approaches **Differ in Treatments of Temperature Regimes**

Nomenclature from Andronic, et al, 2402.04366, summarizing efforts of EMMI Rapid Reaction Task Force

Example 1: Statistical Hadronization Model

- No dynamical evolution by assuming heavy quarks unbound in medium and reach thermal equilibrium (kinetic only, large M)
- Instantaneous hadronization at freezeout

Andronic, Braun-Munzinger, Köhler, Redlich, Stachel, 1901.09200

• Using Wigner function in hadronization: scale Mv enters, but not Mv^2

See e.g. Instantaneous Coalescence Model, Parton-Hadron-String Dynamics

Application in pp: Gossiaux (Tu 2pm)

Example 2: Lindblad Equation in Osaka and Nantes Approaches

• Focus on $M \gg T \gg Mv^2$, $\Lambda_{OCD} \longrightarrow Lindblad$ equation (quantum Brownian motion), 1D numerics $\frac{\mathrm{d}\rho_{Q\bar{Q}}(t)}{\mathrm{d}t} = -i[H,\rho_{Q\bar{Q}}(t)] + \sum_{i} H_{i}$

 $H = \text{kinetic} + \text{potential} + \dots$

Miura, Akamatsu, Asakawa, Kaida, 2205.15551

$$D_{ij} \left(L_i \rho_{Q\bar{Q}}(t) L_j^{\dagger} - \frac{1}{2} \{ L_j^{\dagger} L_i, \rho_{Q\bar{Q}}(t) \} \right)$$

 L_i : singlet-octet, octet-octet transitions

• Nantes: position basis D_{ii} has off-diagonal part

Example 3: Coupled Boltzmann Equations in Duke/MIT Approach

- Open heavy quarks & antiquarks for $T \gg Mv^2$, unbound pair $(rac{\partial}{\partial t}+\dot{x}_Q\cdot
 abla_{oldsymbol{x}_Q}+\dot{x}_{oldsymbol{\bar{Q}}} \cdot
 abla_{oldsymbol{x}_{oldsymbol{Q}}})f_{Qoldsymbol{\bar{Q}}}(oldsymbol{x}_{oldsymbol{\ell}})$
- Each quarkonium state $n\ell s$ for $Mv^2 \gtrsim T$

$$\left(\frac{\partial}{\partial t} + \dot{\boldsymbol{x}} \cdot \nabla_{\boldsymbol{x}}\right) f_{nls}(\boldsymbol{x}, \boldsymbol{p}, t) = \mathcal{C}_{nls}^+ -$$

 $f_{Q\bar{Q}} \neq f_{Q} f_{\bar{Q}}$ to handle **correlated** and **uncorrelated** (re)combination

$${\cal L}_Q, {m p}_Q, {m x}_{ar Q}, {m p}_{ar Q}, t) = {\cal C}_{Qar Q} - {\cal C}^+_{Qar Q} + {\cal C}^-_{Qar Q}$$

Boltzmann Equation for Quarkonium

• Boltzmann/rate equation also used in **Tsinghua, Saclay, Santiago, TAMU** approaches

Density of bound state:

$$\frac{\mathrm{d}n_b(t,\mathbf{x})}{\mathrm{d}t} = -\Gamma n$$

Rigorous derivation from OQS + pNRQCD in quantum optical and semiclassical limits Dissociation/recombination terms depend on chromoelectric correlator, a new gluon distribution

$$\Gamma = \int \frac{\mathrm{d}^{3} p_{\mathrm{rel}}}{(2\pi)^{3}} |\langle \psi_{b} | \boldsymbol{r} | \Psi_{\boldsymbol{p}_{\mathrm{rel}}} \rangle|^{2} [g_{\mathrm{adj}}^{++}]^{>} (-\Delta E)$$

$$F = \int \frac{\mathrm{d}^{3} p_{\mathrm{cm}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3} p_{\mathrm{rel}}}{(2\pi)^{3}} f_{Q\bar{Q}} |\langle \psi_{b} | \boldsymbol{r} | \Psi_{\boldsymbol{p}_{\mathrm{rel}}} \rangle|^{2} [g_{\mathrm{adj}}^{--}]^{>}$$

Yao, Mehen, 1811.07027, 2009.02408

$$[g_{\mathrm{adj}}^{++}]^{>}(\omega) = e^{\omega/T} [g_{\mathrm{adj}}^{--}]^{>}(-\omega)$$

 $v_b(t,\mathbf{x}) + F(t,\mathbf{x})$ Modeling reaction rates

Example 4: Lindblad Equation in Munich-KSU Approach

 $\frac{\mathrm{d}\rho_{Q\bar{Q}}(t)}{\mathrm{d}t} = -i[H + \gamma_{\mathrm{adj}}\Delta h, \ \rho_{Q\bar{Q}}(t)]$

Novel transport coefficients in terms of chromoelectric correlator

$$\kappa_{\rm adj} + i\gamma_{\rm adj} \equiv \frac{g^2 T_F}{3N_c} \int dt \langle \mathcal{T}E_i^a(t)\mathcal{W}^{ab}(t) \rangle \langle \mathcal{T}E_i^a(t)\mathcal{W}^{ab}(t$$

• New development: **3-loop QCD potential, beyond Coulomb**

	PDG	V_s^c	$V_s^{\rm 3L}$
$M(1S)/{ m GeV}$	9.445	9.445	9.
$M(2S)/{ m GeV}$	10.017	9.635	10.
$M(3S)/{ m GeV}$	10.355	9.670	10.
$M(1P)/{ m GeV}$	9.888	9.635	9.
$M(2P)/{ m GeV}$	10.251	9.670	10.

Brambilla, Magorsch, Strickland, Vairo, Griend, 2403.15545

• Focus on $M \gg Mv \gg T$, Λ_{OCD} and $T \gg Mv^2 ->$ Lindblad equation (quantum Brownian motion)

$$+ \kappa_{\mathrm{adj}} \left(L_{\alpha i} \rho_{Q\bar{Q}}(t) L_{\alpha i}^{\dagger} - \frac{1}{2} \left\{ L_{\alpha i}^{\dagger} L_{\alpha i}, \rho_{Q\bar{Q}}(t) \right\}$$

Chromoelectric Correlators

• Similar to but different from heavy quark diffusion coefficient, in terms of operator ordering HQ diffusion

$$\kappa_{\text{fund}} = \frac{g^2}{3N_c} \operatorname{Re} \int dt \langle \operatorname{Tr}_c[U(-\infty,t)E_i(t)U(t,0)E_i(0)U(0,-\infty)] \rangle_{T,Q} \quad \langle n | \bullet \\ F_{0i}(0)$$

$$\mu \text{arkonium}$$

$$\kappa_{\text{adj}} = [g_{\text{adj}}^{++}]^> (\omega = 0) = \frac{g^2 T_F}{3N_c} \int dt \langle E_i^a(t) \mathcal{W}^{ab}(t,0)E_i^b(0) \rangle_T \quad \langle n | \bullet \\ F_{0i}(0)$$

Qı

$$\kappa_{\text{fund}} = \frac{g^2}{3N_c} \operatorname{Re} \int dt \langle \operatorname{Tr}_{c}[U(-\infty,t)E_{i}(t)U(t,0)E_{i}(0)U(0,-\infty)] \rangle_{T,Q} \quad \langle n| \qquad F_{0i}(0)$$

$$uarkonium$$

$$\kappa_{\text{adj}} = [g_{\text{adj}}^{++}]^{>}(\omega = 0) = \frac{g^2T_F}{3N_c} \int dt \langle E_{i}^{a}(t)\mathcal{W}^{ab}(t,0)E_{i}^{b}(0) \rangle_{T} \quad \langle n| \qquad F_{0i}(0)$$

• Axial gauge puzzle: Feynman gauge calculations show the two correlators differ, but would be same in (temporal) axial gauge

Eller, Ghiglieri, Moore, 1903.08064; Binder, Mukaida, Scheihing, Yao, 2107.03945

Bruno Scheihing: obstruction in defining (temporal) axial gauge for κ_{fund} puzzle solved Scheihing, Yao, PRL 130, 052302 (2023)

$F_{0i}(t)$ $\mathbf{V} | n \rangle$

Chromoelectric Correlators in Weakly and Strongly Coupled Plasmas

 NLO calculation in QCD compared with strong coupling results in $\mathcal{N} = 4$ SYM

In strong coupling limit:

 $[g_{\rm adj}^{++}]^>(\omega)$ vanishes at $\omega < 0$ $\kappa_{\rm adj} = 0$

Lindblad and Boltzmann equations (Markovian) become trivial (no dynamics)

Implication for phenomenology

Need non-Markovian description

 $\rho_{Q\bar{Q}}(t) = \text{Tr}_{QGP}[U(t)\rho_{\text{tot}}(0)U^{\dagger}(t)]$

Summary and Path Forward

Quarkonia data at low p_T

• Future question 1: What is microscopic structure of QGP probed by different quarkonia, as reflected by chromoelectric correlator?

> Is the QGP a weakly coupled gas of quarks/gluons or a strongly coupled fluid, probed by $\Upsilon(nS)$?

Constrain chromoelectric correlator from data

We need both RHIC and LHC data for this

Data from RHIC important to constrain $[g_{adi}^{++}]^>(\omega)$ at finite ω (sPHENIX & STAR)

Probe

Chromoelectric correlator

Theory Phenomenology Computation

Summary and Path Forward

Future question 2: lattice calculation of chromoelectric correlator

Analytically continue to Euclidean spacetim evaluate and invert

Spectral function is non-odd Scheihing, Yao,

Renormalization Leino, 2401.06733; Brambilla, Wang, 2312.05032

Future question 3: spin alignment/polarization of quarkonium probes chromomagnetic correlator Cheung, Vogt, 2203.10154; Zhao, Chen, 2312.01799

Boltzmann/Lindblad equations derived from OQS + pNRQCD

Theoretical calculations and experimental constrain

• Future question 4: solve Lindblad equation for multiple $Q\bar{Q}$ pairs

Important for charmonium phenomenology, but computationally expensive

Machine learning? Quantum computing?

The,
$$G_{adj}(\tau) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \frac{\exp\left(\omega(\frac{1}{2T} - \tau)\right)}{2\sinh\left(\frac{\omega}{2T}\right)} \rho_{ad}^{+\infty}$$

, 2306.13127 $\kappa_{adj} = \lim_{\omega \to 0} \frac{T}{2\omega} \left[\rho_{adj}^{++}(\omega) - \rho_{adj}^{++}(-\omega)\right]$

- $\langle B_i^a(t)\mathcal{W}^{ab}(t,0)B_i^b(0)\rangle_T$
- Yang, Yao, 2405.20280

Lin, Luo, Yao, Shanahan, 2402.06607 de Jong, Metcalf, Lee, Mulligan, Płoskoń, Ringer, Yao, 2010.03571 2106.08394 17

