Bayesian inference and jet quenching What's new and what's next?

Raymond Ehlers¹

Hard Probes 2024, Nagasaki, Japan 26 September 2024

¹Lawrence Berkeley National Lab/UC Berkeley raymond.ehlers@cern.ch www.rehlers.com

BERKELEY LAB Berkeley ·····]["] UNIVERSITY OF CALIFORNIA

Jet quenching measurements

Raymond Ehlers (LBNL/UCB) - 26 September 2024

How do we make sense of this? What can we learn?

Why and what of Bayesian inference
 Bayesian inference in the hard sector

 A. Selection of recent analyses
 B. Current considerations and future questions

Bayesian analysis: Connecting models and data

Analysis

- Given data \vec{x} and parameters $\vec{\theta}$, we can apply **Bayes' theorem**
- $P(\theta|x)$: posterior dist.: prob of θ given x
 - Most prob. value \rightarrow **best description** of data
 - \rightarrow Posterior encodes everything we want to learn

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model

Data

• For a given model, which parameters are most compatible with exp. measurements?

 $= \frac{P(x|\theta)P(\theta)}{P(x)}$

• $P(x|\theta)$: likelihood

x is described by θ

 Depends on covariance, data + theory uncert.

- $P(\theta)$: prior distribution for θ
 - Choice makes assumptions explicit

Bayesian analysis: Connecting models and data

- For a given model, which parameters are most compatible with exp. measurements?
- Extracting QGP properties is important, but not the only goal! Broad consistency of model and data?
 • Search for **regions of tension**, areas for improvement Sensitivity studies + experimental design prob of θ given x • What should we measure next? Most prob. value \rightarrow best description of data data + theory uncert.

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model

• Given data \vec{x} and parameters $\vec{\theta}$, we can apply **Bayes' theorem**

 $P(\theta)$: prior distribution for θ

- Choice makes assumptions explicit
- \rightarrow Posterior encodes everything we want to learn

Bayesian analysis: In practice

Analysis

Simplified procedure

- 1. Implement parameters to control model (a "parametrization")*
- 2. Explore parameter space (w/ bounds from prior)
- Approach enables computationally tractable procedure to extract
 parameters
 - Calculate limited number of points
 - Interpolate to cover phase space
- Parameterization + prior choices matter, intertwined with model

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model

Data

*: Model not necessarily formulated in terms of \hat{q}

Bayesian analysis: In practice

Analysis

Simplified procedure

- 1. Implement parameters to control model (a "parametrization")*
- 2. Explore parameter space (w/ bounds from prior)
- Approach enables computationally tractable procedure to extract
 parameters
 - Calculate limited number of points
 - Interpolate to cover phase space
- Parameterization + prior choices matter, intertwined with model

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model

Data

Design Points of Inputs A,C

- Exploring the parameter space is expensive!
- Recent JETSCAPE analysis:
 O(10 M) compute hours
- Employ machine + transfer learning, gaussian processes, Markov chain Monte Carlo, etc to optimize and reduce
 - Cost-efficient methods play critical role

*: Model not necessarily formulated in terms of \hat{q}

Bayesian analysis: Model*

Analysis

- O Pick your favorite Monte Carlo: CUJET, DREENA, Hybrid, JETSCAPE (MATTER+LBT), (Co)LBT, LIDO, MATTER, MARTINI, ...
 - Explore parameter space of these models
- Model choices matter!
- **Conclusions may be more general** \bigcirc
- Ex: **Energy loss in QCD** matter characterized by jet transport coefficient \hat{q}
 - Path length *L*, momentum transfer *k*

$$\hat{q} \equiv \frac{\langle k_{\rm T}^2 \rangle}{L} \sim \int k^2 C(k) {\rm d}^2 k$$

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model

Data

*: focusing on the hard sector

Bayesian analysis: Data

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Bayesian analysis: Data

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Bayesian Inference in heavy-ion collisions (non-exhaustive)

Jet quenching via hadronic observables

Two approaches to \hat{q} parametrization

HTL \hat{q} /virtuality dependence: specific analytic form **Information field: flexible set of random functions**

More physics inspired

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Parametrization impacts constraints!

From Prior to Posterior: JETSCAPE

Raymond Ehlers (LBNL/UCB) - 26 September 2024

arXiv:2408.08247

12

JETSCAPE Inclusive hadron RAA

JETSCAPE, 2021

- Proof-of-principle analysis **demonstrating Bayesian inference in the hard sector**
 - Selected inclusive hadron R_{AA} , in terms of centrality, experiments

- Significant constraints on prior \bigcirc
- **Consistent** \hat{q} for RHIC and LHC Consistent with JET collaboration

Model: JETSCAPE **MATTER+LBT** (early) **Data:** Selection of incl. hadron RAA

Raymond Ehlers (LBNL/UCB) - 26 September 2024

JETSCAPE, Phys.Rev.C 104 (2021) 2, 024905

Comprehensive hadron analysis: Information field

Xie et al, 2023, 2024

- First comprehensive analysis with hadron observables
 - Includes di-hadron and gammahadron correlations from RHIC, LHC
 - $\bullet \ \ \mathsf{Different\ sensitivities} \to \mathsf{additional\ info}$

- Preferred functional form differs from JETSCAPE
- Strong increase at low T*

*assumes $\hat{q} = 0$ below T_C

Model: NLO Parton Model + Higher-twist

Data: Incl. hadron R_{AA} , dihadron, γ -hadron corr.

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Information field parametrization

Xie, Ke, Zhang, Wang, PRC 108 (2023) 1, L011901 Xie, Ke, Zhang, Wang, PRC 109 (2024) 6, 064917

Information field: centrality + temperature dependence

Limited precision @ high T

Model + Higher-twist

hadron, γ -hadron corr.

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Higher precision @ LHC \rightarrow more sensitive at high T

Xie, Ke, Zhang, Wang, PRC 108 (2023) 1, L011901 Xie, Ke, Zhang, Wang, PRC 109 (2024) 6, 064917

Two approaches to \hat{q} parametrization: What did we learn?

Flexibility vs interpretability:

Highlights influence of model, parametrization, and data choices

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Soft-hard correlations

Hard-soft interactions: Bayes-DREENA

DREENA, 2024

 Use high-p_T observables to explore bulk QGP properties

• Expect different η/s at high p_T

- Calibrate with two classes of observables:
 only low-p_T or low + high-p_T
 - Improved description of data with more data
- Significantly stronger constraint on parameter posterior for low + high-p_T

Hard observables impact soft parameters First step to further investigations

Model: DREENA-A

Data: Selected ident. part mult., mean *p*_T, incl., D hadron *R*_{AA}, v2

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Magdalena Djordjevic, Sep 24, 2024, 15:35

Hard-soft interactions: Bayes-DREENA

DREENA, 2024

 Use high-p_T observables to explore bulk QGP properties

• Expect different η/s at high p_T

- Calibrate with two classes of observables:
 only low-p_T or low + high-p_T
 - Improved description of data with more data
- Significantly stronger constraint on parameter posterior for low + high-p_T

Hard observables impact soft parameters First step to further investigations

Model: DREENA-A

Data: Selected ident. part mult., mean *p*_T, incl., D hadron *R*_{AA}, v2

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Hadron and jet observables

Adding in jet suppressions measurements with LIDO

LIDO, 2021

- LIDO first to calibrate on a subset of jets and hadron R_{AA} for initial model calibration
- Demonstrates that consistent description is possible

- Use calibrated model to predict other datasets
 - Fragmentation well described
 - *R*_{AA} R-dependence shows some tension

Model: LIDO

Data: Selected 0-10% incl. hadron, jet, and D *R*_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Ke, Wang, JHEP 05 (2021) 041

Adding in jet suppressions measurements with LIDO

LIDO, 2021

- LIDO first to calibrate on a subset of jets and hadron R_{AA} for initial model calibration
- Output Demonstrates that consistent description is possible

- Use calibrated model to predict other datasets
 - Fragmentation well described
 - R_{AA} R-dependence shows some tension

Model: LIDO

Data: Selected 0-10% incl. hadron, jet, and DR_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Ke, Wang, JHEP 05 (2021) 041

The world's knowledge of \hat{q}

State-of-the-field from 2022

Details of *q̂* extraction are important!
→ Comparisons may not be equivalent â/T³

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Apolinário, Lee, Winn: Prog.Part.Nucl.Phys. 127 (2022) 103990

Comprehensive hadron and jet *R*AA analysis: JETSCAPE

JETSCAPE, 2024

- Comprehensive study: what do jets bring to the analysis?
 - Include all available inclusive hadron and jet R_{AA} measurements
- Reasonable overall description of data, with some tension for particular measurements

Model: JETSCAPE MATTER+LBT

Data: Inclusive hadron and jet R_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

JETSCAPE, arXiv:2408.08247

Peter Jacobs, Sep 23, 2024, 15:40

Not all \hat{q} are equivalent

JETSCAPE reports \hat{q} when virtuality is low i.e., $\hat{q} = \hat{q}_{HTL}^{run} \times f(Q^2)$

Explore differentially with fixed framework

Model: JETSCAPE MATTER+LBT

Data: Inclusive hadron and jet R_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Differential studies of hadron vs jet R_{AA}

Peter Jacobs, Sep 23, 2024, 15:40

Differential studies of hadron vs jet R_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Peter Jacobs, Sep 23, 2024, 15:40 ar

Calibrating with low vs high *p*_T hadrons

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Full p_T range

Peter Jacobs, Sep 23, 2024, 15:40 arXiv:2408.08247

Calibrating with low vs high p_{T} hadrons

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Full p_T range

Only hadrons $p_T > 30 \text{ GeV}$

Peter Jacobs, Sep 23, 2024, 15:40 arXiv:2408.08247

Calibrating with low vs high *p*_T hadrons

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Full *p*_{*T*} range

- Low *p*_T dominates due to small exp. uncert.
- **High** *p***T** in line with jet data
- Output Set in the set of the s
- Theory uncertainty is important!
 - eg. LO \hat{q} , no shadowing included
- Small exp. uncertainty where theory has largest uncertainty

Peter Jacobs, Sep 23, 2024, 15:40 arXiv:2408.08247

Improving uncertainty treatment

Theory uncertainties

These analyses are inherently multiscale and sensitive to many choices

- Theory uncertainties are an \bigcirc open question
- Possible approaches: \bigcirc
- Separating processes into multiple sectors?
 - pQCD calculable w/ controllable uncertainty
 - Non-perturbative/strongly coupled, \bigcirc dominated by modeling
- Move beyond LO \hat{q} ? \bigcirc
- "Extra" source: constant / parametrized?
- Start with **controllable vacuum parameters**? \bigcirc NLO production cross sections?
- New models, new approaches,...?

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Experimental uncertainties

Improving uncertainty treatment

Theory uncertainties

• These analyses are inherently multiscale and sensitive to many choices

- Theory uncertainties are an \bigcirc open question
- Possible approaches: \bigcirc
- Separating processes into multiple sectors? \bigcirc
 - pQCD calculable w/ controllable uncertainty
 - Non-perturbative/strongly coupled, dominated by modeling
- Move beyond LO \hat{q} ? \bigcirc
- "Extra" source: constant / parametrized?
- Start with **controllable vacuum parameters**? \bigcirc NLO production cross sections?
- New models, new approaches,...?

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Experimental uncertainties

Report signed uncertainties where possible!

- **Limited information reported** in uncertainties: often just statistical and systematic
 - Sometimes additional sources: scale, shape, etc...
- Systematic uncertainties are often non-gaussian
- Uncertainty correlations are non-trivial
- Estimated for Bayesian inference

Adding in jet substructure

¹Recent note: relative constraint holds, but y-scale may vary

Raymond Ehlers (LBNL/UCB) - 26 September 2024

	I				I	Ι	
)	0.20	0.25	0.30	0.35	0.40	0.45	0.
			Τ ((GeV)			

Peter Jacobs, Sep 23, 2024, 15:40

Adding in jet substructure

What should we measure next?

Need full sensitivity + experimental design studies. Until then...

High precision high *p***_T hadrons @ RHIC**

due to limited precision at high p_T

Raymond Ehlers (LBNL/UCB) - 26 September 2024

High precision jet substructure

Summary

- **Bayesian inference: rigorous tool** to explore physics, **not just to extract model parameters!**
- Comprehensive studies using all applicable hadron and jet suppression data
- Differential studies of **RHIC vs LHC**, *R*_{AA} vs *I*_{AA}, **hadron vs jet**, jet substructure point to regions of agreement, tension
- **Observable sensitivity and exp. design,** pinpoint regions of interest, provide important feedback for models
- Requires state-of-the-art cost-efficient computation
 - Need fully apples-to-apples comparisons
 - Calibrate different models under same conditions
 - Essential: significant theory and experimental uncertainties

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Bayesian inference @ Hard Probes 2024

Talks

<u>Multi-Observable Analysis of Jet Quenching</u> <u>Using Bayesian Inference</u>

Peter Jacobs, Sep 23, 2024, 15:40

Bayes-DREENA: Integrated QGP Parameter Inference from High-pt and Low-pt Data

Magdalena Djordjevic, Sep 24, 2024, 15:35

<u>Flavor hierarchy of parton energy loss in</u> <u>quark-gluon plasma from a Bayesian analysis</u>

Guang-You Qin, Sep 25, 2024, 10:00

Thanks to Luna Chen, Peter Jacobs, Weiyao Ke, Leif Lonnblad, Abhijit Majumder, Yacine Mehtar-Tani, Govert Nijs, and Jean-Francois Paquet for useful input and discussions

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Posters

Bayesian inference of the magnetic field and chemical potential on holographic jet quenching in heavy ion collisions

Liqiang Zhu

Exploring the universality of jet quenching via Bayesian inference

Alexandre Falcão

Nuclear shapes and spectator production

Wilke Van Der Schee

Differential studies: Observable dependence

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Xie, Ke, Zhang, Wang, PRC 108 (2023) 1, L011901 Xie, Ke, Zhang, Wang, PRC 109 (2024) 6, 064917

Functional dependence of energy-loss

Analysis A : Inclusive jet observables (used for inference)

Model: Parametrized energy-loss distribution

Data: Inclusive, γ -tagged jet R_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Calibration with different parametrizations Sensitive to q/g fraction

- Calibrate on inclusive $\rightarrow \gamma$ -tagged well described - Calibrate on quark dominated γ -tagged \rightarrow less well constrained for inclusive with gluon jet contribution

Poster: Alexandre Falcão

Functional dependence of energy-loss

Analysis B: Inclusive jet observables (predicted)

Model: Parametrized energy-loss distribution

Data: Inclusive, γ -tagged jet R_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

γ -jet observables (used for inference)

Calibration with different parametrizations Sensitive to q/g fraction

- Calibrate on inclusive $\rightarrow \gamma$ -tagged well described - Calibrate on quark dominated γ -tagged \rightarrow **less well constrained for inclusive with gluon jet contribution**

Poster: Alexandre Falcão

Bayesian analysis: Models for today

Analysis

JETSCAPE: MATTER + LBT

- Partonic energy loss: HTL multistage, virtuality-dependent
- 2+1D calibrated hydro

LIDO

- Partonic energy loss: pQCD matrix elements+Langevin transport
- 2+1D viscous hydro

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model

Data

NLO Parton Model + Higher-Twist

- Partonic energy loss: Highter Twist
- Hydro: CLVisc 3+1D with Trento initial conditions

DREENA-A

- Partonic energy loss: HTL with running coupling
- 3+1D viscous hydro
- MC-Glauber, Trento, IP-Glasma initial conditions

Bayesian inference workflow

Model + System Parameters

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Model sensitivity + experimental design

Observable sensitivity to posterior perturbation

JETSCAPE, PRC.103.054904

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Identifying new + sensitive observables

e.g. "Bayesian experimental design"

Model sensitivity + experimental design

Observable sensitivity to posterior perturbation

JETSCAPE, PRC.103.054904

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Identifying new + sensitive observables

e.g. "Bayesian experimental design"

Nijs, van der Schee, PRC 106 (2022) 4, 044903

Example: Bayesian experimental design

- Quantify impact of new sPHENIX data (to prioritize measurements?)
 - eg. Neutrino physics: Phys.Rev.C 103 (2021) 6, 065501
 - eg. OO w/ Trajectum: arXiv:2110.13153
- 1. Calibrate model to existing data (ie. Bayesian analysis)
 - eg. JETSCAPE hard sector calibration
- 2. Generate pseudo-data with expected sPHENIX uncertainties
 - Can sample posterior dist. for parameters
- 3. Re-run Bayesian Inference, and observe impact on new posterior
 - Further vary observables included

Raymond Ehlers (LBNL/UCB) - 26 September 2024

RE, Nucl. Phys. A 1043 (2024) 122821 (Predictions for the sPHENIX physics program)

Details of *q̂* extraction
 are important!
 → Comparisons may
 not be equivalent

Raymond Ehlers (LBNL/UCB) - 29 July 2024

Apolinário, Lee, Winn: Prog.Part.Nucl.Phys. 127 (2022) 103990

Details of *q̂* extraction
 are important!
 → Comparisons may
 not be equivalent

JETSCAPE calibrations are consistent when evaluated at same μ^2

Connecting Forward LHC + EIC

- Complementarity between **forward LHC/RHIC + EIC**
- Bayesian inference: essential for comprehensive analysis of heterogeneous datasets (EIC, fLHC, fRHIC) with rigorous theory to explore linear/non-linear QCD evolution

 xG_W $xG_{\rm D}$

> Table 7.2: The process dependence of two gluon distributions (i.e., the Weizsäcker-Williams (WW for short) and dipole (DP for short) distributions) in e+A(e+p) and p+A collisions. Here the + and - signs indicate that the corresponding gluon distributions appear and do not appear in certain processes, respectively.

- Model **consistency with data**
- Models which **best describe** data (Bayes evidence)
- Observable sensitivity studies

Raymond Ehlers (LBNL/UCB) - 26 September 2024

	Inclusive DIS	SIDIS	DIS dijet	Inclusive in <i>p</i> +A	γ +jet in <i>p</i> +A	dije					
W	—	_	+	—	—						
ЭР	+	+	_	+	+						

Active learning design points

Prioritize reducing predictive error across the full space **Do not look at experimental data** during this process

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Journal of Artificial Intelligence Research (1996) 129–145

Transfer learning

Idea: Can we use data with related collision (source) systems for cost-efficient emulation of the desired target system?

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Slide: Simon Mak

D. Liyanage et al, PRC 105 (2022) 3, 034910

Improved uncertainty quantification + tools

- Output State of the second analysis tools are critical
- Expensive forward model \rightarrow emulate the calculation
- New emulators with knowledge of uncertainties show meaningful improvement
- ML: key role to play in Bayesian Inference
 - e.g. Cost-efficient methods

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Roch et al, arXiv:2405.12019

Improved uncertainty quantification + tools

- Expensive forward model \rightarrow emulate the calculation
- New emulators with knowledge of uncertainties show meaningful improvement
- ML: key role to play in Bayesian Inference
 - e.g. Cost-efficient methods

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Roch et al, arXiv:2405.12019

Posteriors: hadron R_{AA} at low p_{T}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Posteriors: hadron R_{AA} at high p_{T}

Some tension at higher *p*_T

Uncertainty smallest at lower *p***T** \rightarrow drives result

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Posteriors: jet R_{AA}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Parameter posterior distribution

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Not much sensitivity to c1 and c2. → We'll skip them for now

Parameter posterior distribution

Raymond Ehlers (LBNL/UCB) - 26 September 2024

$$\alpha_{\rm S} \sim 0.3-0.4$$

Low Q_0 (as expected)

Wide τ_0 up to ~1 fm/c

Some preference for larger c3

Centrality dependence

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Further investigations in the future

Jets and jet substructure

- - Focus on 0-10% central data
- Baseline: Jet R_{AA} only

Jet R_{AA}

• ALICE, ATLAS, CMS, STAR

- ATLAS: D(z)
- CMS: $\xi(z)$

Model: JETSCAPE MATTER+LBT

Data: Selected inclusive jet R_{AA}, jet substructure

Raymond Ehlers (LBNL/UCB) - 26 September 2024

What (additional) information do jet substructure observables contain? • Further insight into differences in \hat{q} from hadron- and jet-only extractions? • Exploratory investigation with **simplified but consistent** error treatment

Peter Jacobs, Sep 23, 2024, 15:40

Evaluating virtuality dependence for \hat{q}

Raymond Ehlers (LBNL/UCB) - 26 September 2024

Imagine for now we stay with latest analysis $\hat{q} = \hat{q}_{HTL}^{run} \times f(Q^2)$

Virtuality dependence: $f(Q^2)$

Raymond Ehlers (LBNL/UCB) - 26 September 2024

