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INTRODUCTION

Weak probes covered in Nuclear PDFs by Petja Paakkinen 
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system size.
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▸ EM probes penetrate the QCD environment undisturbed, carrying information at their 
production points.
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Spectra measurements in experiments

▸ EM are produced throughout the evolution, so isolating productions from different stages is 
challenging.  

▸ However, selecting  or  windows can be helpful. On average, the larger  or  the EM 
probes have, the earlier they are produced.

pT M pT M

STAR, PLB 750 (2015) 64–71
ALICE, PLB 754 (2016) 235–248

Excess of direct 
photons over 
prompt photons

Excess of inclusive 
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5
direct photons inclusive dileptons
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▸ Off-equilibrium corrections (such as viscous effects, -field); …B
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Thermalization in QCD kinetic theory

Gluon evolution Quark evolution Photon emission rate

time

thermal non-equilibriumcos θ = pz /p

▸ The system starts with a gluon-dominated initial state; quarks are produced via gluon fusion  and gluon splitting .gg → qq̄ g → qq̄

▸ Non-equilibrium spectrum is well below the thermal spectrum at low  and is much harder; thermalization is first achieved in the 
soft regime. [Note the -dependence!]

pT
pT

time

Kurkela, Mazeliauskas, PRD 99 (2019) 054018; X. Du, Schlichting, PRD 104 (2021) 054011; Garcia-Montero, Mazeliauskas, Plaschke, Schlichting, JHEP03(2024)053Garcia-Montero, 9:00 am, Tue
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faster 
equilibration

▸ EM radiations are penetrating but can obtain non-zero , because of the anisotropically expanding emission source. [same as hadrons]vn

▸ After accounting for pre-equilibrium dileptons, the total dilepton flow is significantly suppressed relative to the thermal dilepton flow; 
the faster the equilibration is, the smaller the  are.vn(pT)

▸ Combining spectra and anisotropic flows helps to probe the equilibration. [similar story in photons]
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Angular distribution as probe of equilibration

Coquet, Winn, X. Du, Ollitrault, Schlichting, PRL 132, 232301 (2024); see also: Seck, Friman, Galatyuk, van 
Hees, Speranza, Rapp, Wambach, 2309.03189
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Angular distribution as probe of equilibration
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▸ Drell-Yan: quark momenta are mostly longitudinal; preferential 
emission of longitudinal leptons; negative quadrupole moment.

▸ Pre-eq. QGP: quark momenta are mostly transverse; preferential 
emission of transverse leptons; positive quadrupole moment.
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HYDRO STAGE
hydro stage



Thermal QGP dilepton production

STAR, PRL113, 022301 (2014); PRC 92, 024912 (2015); PLB 
750 (2015) 64–71; PRC 107, L061901 (2023); 2402.01998.

LD, Shen, Jeon, Gale, PRC 108 (2023) L041901; LD, Gao, Jeon, Gale, PRC 109, 014907 (2024); LD, Phys.Rev.C 110 (2024) 1, 014904
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Thermal QGP dilepton production

▸ First estimate of NLO dilepton emission at nonzero  with (3+1)D multistage hydrodynamic model; 

▸ The multistage model is calibrated using rapidity-dependent hadronic observables from the Beam Energy Scan.

μB

STAR, PRL113, 022301 (2014); PRC 92, 024912 (2015); PLB 
750 (2015) 64–71; PRC 107, L061901 (2023); 2402.01998.

LD, Shen, Jeon, Gale, PRC 108 (2023) L041901; LD, Gao, Jeon, Gale, PRC 109, 014907 (2024); LD, Phys.Rev.C 110 (2024) 1, 014904

Churchill, LD, Gale, Jackson, Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)

https://github.com/LipeiDu/DileptonEmission
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QCD thermometer: experiments

STAR, 2402.01998

HADES, Nature Phys. 15(2019) 1040

NA60, PRL 100, 022302 (2008); EPJC 59 607-623 (2009). STAR, 2402.01998. HADES, Nat. Phys.,1040–1045 (2019). Rapp and van Hees, PLB 753, 586 (2016)
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STAR

HADES

Questions:

▸ How do we know if the fitting method using 

 works? 
dN
dM

∝ (MT)3/2e−M/T

▸ How do we interpret the extracted temperature?

NA60, PRL 100, 022302 (2008); EPJC 59 607-623 (2009). STAR, 2402.01998. HADES, Nat. Phys.,1040–1045 (2019). Rapp and van Hees, PLB 753, 586 (2016)
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QCD thermometer: reexamined in models

Churchill, LD, Gale, Jackson, Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)
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QCD thermometer: reexamined in models

▸ The fit quality of the exponential ansatz is good [✅ fitting method verified!]. Uncertainties are larger at higher 
beam energies and in central collisions since the fireball has larger temperature variations.
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QCD thermometer: reexamined in models

▸ The fit quality of the exponential ansatz is good [✅ fitting method verified!]. Uncertainties are larger at higher 
beam energies and in central collisions since the fireball has larger temperature variations.

▸ A correlation between the average temperature and the initial hydro temperature is identified [✅ interpretation 
of the extracted temperature found!].
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QCD thermometer: reexamined in models

▸ The fit quality of the exponential ansatz is good [✅ fitting method verified!]. Uncertainties are larger at higher 
beam energies and in central collisions since the fireball has larger temperature variations.

▸ A correlation between the average temperature and the initial hydro temperature is identified [✅ interpretation 
of the extracted temperature found!].

▸ Measure the initial temperature of the evolving QCD fireball in a way that is unaffected by dynamical distortions.

Churchill, LD, Gale, Jackson, Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)

8 , 8 centralitiessNN

https://github.com/LipeiDu/DileptonEmission
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Multi-messenger study

LD, arXiv: 2408.08501

https://github.com/LipeiDu/DileptonEmission

Shen, Heinz, Paquet, Gale, Phys. Rev. C 89 (2014) 044910; Churchill, LD, Gale, Jackson, Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)
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Multi-messenger study

Tγ0

Tγ
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Multi-messenger study

Tℓℓ̄

Tγ0

Tγ
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Tγ ≈ Tγ0
1 + v⊥

1 − v⊥
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Tγ ≈ Tγ0
1 + v⊥

1 − v⊥

Multi-messenger study

▸ A correlation between the temperatures extracted from photon spectra (without Doppler shift) and dilepton spectra 
is identified, leading to the possibility of combining measurable photon and dilepton spectra to extract radial flow.
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Tγ ≈ Tγ0
1 + v⊥

1 − v⊥

Multi-messenger study

▸ A correlation between the temperatures extracted from photon spectra (without Doppler shift) and dilepton spectra 
is identified, leading to the possibility of combining measurable photon and dilepton spectra to extract radial flow.

▸ Measuring the thermodynamic properties of the created systems in heavy-ion collisions using multiple messengers 
through two fundamental interactions within the same framework.
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SUMMARY



Summary

▸ EM radiations from the early stages offer insights into thermalization and chemical 
equilibration processes. 

▸ EM radiation from both the QGP and hadronic matter reveals the thermodynamic 
properties of QCD matter. 

▸ Various thermodynamic measures have been proposed; they should be examined in 
realistic simulations. 

▸ We are entering a new era of multi-messenger studies in heavy-ion collisions. 

▸ More systematic measurements: hadrons, photons, and dileptons 

▸ More advanced theoretical modeling
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NLO emission rates

Churchill, LD, Gale, Jackson, Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)



Extraction of electric conductivity σel

Floerchinger, Gebhardt, Reygers, PLB 837 (2023) 137647; Rapp, 2406.14656; Atchison, Han, Geurts, 2408.1017

▸ Electric conductivity  manifests in low-mass thermal dilepton spectra:  

▸ The inclusion of thermal pion widths significantly broadens the conductivity peak near zero energy. 

▸ A key signature of a small conductivity is the enhanced dilepton yields in the very-low-mass region.

σel σel(T ) =
e2

2
lim
q0→0

ρem(q0, q = 0)/q0

Rapp, 2406.14656


