Experimental overview of electromagnetic and weak probes

Daiki Sekihata Center for Nuclear Study, the University of Tokyo September 26th, 2024

Uniqueness of electromagnetic and weak probes

- Emitted from all stages of the collision
- Leave the system with negligible strong final-state interaction
- Carry undistorted information at the time of their production

Sep.26th, 2024 (HP2024)

~10 fm/*c*

~10¹⁵ fm/*c*

Source of electromagnetic and weak probes

- Test pQCD
- Constrain nPDFs
- Reference for medium response $(\gamma$ -jet, Z-jet)

Time:

0 fm/*c*

Sep.26th, 2024 (HP2024)

Pre-equilibrium phase

Mechanism of equilibrium

< 1 fm/*c*

~10 fm/*c*

~10¹⁵ fm/*c*

Thermal radiation

- Constrain space-time evolution
 p broadening
- Averaged temperature

Chiral symmetry restoration

- ρ -a₁ mixing

Direct photons

Direct photons: photons not originating from hadron decays

- Prompt photons
 - Initial hard scatterings
 - Fragmentation
- Pre-equilibrium radiation
- Thermal radiation
 - ► QGP
 - Hot hadronic matter
- Jet-medium photons (Not covered in this talk)

Direct photons in PHENIX

- Nonprompt direct photons = direct photons prompt photons = pre-eq. + thermal photons
- Experimentally, direct photons in AA N_{coll} -scaled pp data at the same energy

Interpretation of inverse slope T_{eff}

Vassu Doomra, Sep. 24th PRC 109, 044912 (2024), PHENIX

- T_{eff} from nonprompt direct photons
- No clear dependence on $dN_{ch}/d\eta$, but small increase is not excluded either

- Naive idea:
 - higher p_T; earlier emission and higher T
- In reality:
 - Blueshift due to radial flow
 - Global effect is small due to integration over space-time
 - Can be studied by simple model: $T_0 =$
 - Pre-eq. contribution

arXiv:2205.12299 arXiv:2305.10669 arXiv:2308.09747

Direct-photon puzzle

Vassu Doomra, Sep. 24th PRC 109, 044912 (2024), PHENIX Theory curve: PRC 105, 014909 (2022)

- Large yield: early emission
 Large v₂: late emission
- Difficult to describe the large yield and v₂ simultaneously

• Not observed in ALICE due to large uncertainty PLB 789 (2019) 308, ALICE

Direct-photon HBT in ALICE

ALI-PREL-578928

First direct-photon measurement at $p_T \sim 0.3$ GeV/c at the LHC

Sep.26th, 2024 (HP2024)

First two-photon interferometry: PRL 93 (2004) 022301, WA98 Dmitri Peresunko, Sep. 24th

• Alternative approach for direct photons at low p_T • λ : correlation strength

• q: momentum difference between two photons Four-component template fit to data

 $A(1+\lambda \exp(-q^2 R^2) + a_{contam} Cont + a_{BE \pi \pi} (C_2^{BE \pi \pi} - 1) + a_{Flow} (C_2^{Flow} - 1))$

Direct photons in small system with ALICE

Jerome Jung, Sep. 24th

- First measurement of direct photons in pp at low p_T at the LHC
- MB: described by both prompt only and prompt + thermal radiation
- HM: significant increase of the yield from that in MB pp
- Challenging to calculate direct photon yield in HM pp collisions

Scaling of direct-photon yields vs. dN_{ch}/dn

$$\frac{dN_{\gamma}}{dy} = \int_{p_{T,\min}}^{p_{T,\max}} \frac{dN_{\gamma}^{\text{dir}}}{dp_T dy} dp_T = A \times \left(\frac{dN_{\text{ch}}}{d\eta}\right)^{\alpha}$$

Isolated photons in ALICE

Gustavo Conesa Balbastre, Sep. 25th arXiv:2409.12641 arXiv:2407.01165

- Sensitive to fraction of fragmentation photons passing the isolation cut
 - Interesting for theoretical models
 - Theory (NLO) controls the isolation mechanism for fragmentation γ and prompt γ in both pp and Pb–Pb

NLO (JETPHOX): $p_{-}^{iso} < 2 \text{ GeV}/c$, BFG II FF pp NNPDF40, Pb–Pb nNNPDF30 Statistical unc. ATLAS paper PDF unc.

Dileptons

Schematic view of dielectron mass spectrum

Additional information: invariant mass

- Serves as a clock
 - Differentiate EM radiations from different stages
- No radial flow effect
 - Average temperature of QGP without blueshift

- Sensitive to in-medium spectral function of ρ meson

Early

12

Thermal dielectrons with STAR

- BES-I : √s_{NN} = 19.6, 27, 39, 62.4 GeV
- Isobar collisions (Zr+Zr, Ru+Ru)

Thermal dielectrons in ALICE

Jerome Jung, Sep. 24 arXiv:2308.16704

- Comparison to two types of hadronic cocktail
 - N_{coll}-scaled pp data (vacuum expectation)
 - Modified by measured R_{AA} of c,b \rightarrow e[±] and EPS09

14

Excess of dielectron at low mass in ALICE

• Excess \equiv data – cocktail

Jerome Jung, Sep. 24 arXiv:2308.16704

- Comparison to theoretical models
 - Thermal radiation from hadronic matter
 - Thermal radiation from QGP
- Large cocktail uncertainty of heavy flavors → Need cocktail-independent method Topological separation with DCA (Distance-of-Closest Approach)

Topological separation in ALICE

Sep.26th, 2024 (HP2024)

Florian Eisenhut (poster) Emma Charlotte Ege (poster)

- First attempt to decompose mass spectrum with template fit to DCA
 - Prompt (vector mesons)
 - Nonprompt ($c\bar{c} \rightarrow e^+e^-, b\bar{b} \rightarrow e^+e^-, J/\psi$ from b hadrons)

Distance-of-closest approach (DCA):

- Thanks to two major upgrades
 - High statistics due to continuous readout after GEM upgrade of TPC
 - Better pointing resolution with ITS2

Dielectrons in PHENIX

Low-mass and low-pt γ^* in HADES at SIS18

• Motivation: extract electric conductivity. Namely, dilepton yield at p = 0 GeV/c with $M_{ee} \rightarrow 0$. Phase-space coverage in low mass and low momentum is critical • Au+Au at $\sqrt{s_{NN}}$ = 2.23 GeV with low B field to be collected in 2025

Iuliana Carina Udrea (Poster)

Daiki Sekihata (CNS, U.Tokyo)

18

EW boson productions in ALICE

ALI-PUB-544645

- Sensitive to initial condition of nucleus
- Suggests modification of PDF

JHEP 05 (2022) 036, ALICE EPJC 79 (2019) 935, ATLAS PLB 800 (2020) 135048, CMS JHEP 06 (2023) 022, LHCb

Future facilities

ALICE ITS3: LHC Run4 (2029 - 2032)

Sep.26th, 2024 (HP2024)

NA60+: Alexander Milov, Sep. 24th ITS3: Bong-Hwi Lim, Sep. 24th ALICE3: Cas Van Veen, Sep. 24th

Differential study of thermal radiation Chiral symmetry restoration Precise pointing resolution is the key to reject leptons from charm hadrons.

Daiki Sekihata (CNS, U.Tokyo)

20

Summary

- Direct photons
 - Direct photon puzzle still there
 - Need common efforts from experiment and theory
 - Prompt photons serve as a reference to study medium response in QGP
- Dileptons
 - Different μ_B and temperature with different accelerators
- Significant experimental progress has been recently achieved concerning HF rejection.

We have variety of temperature results with both direct photons and dielectrons now!

- EW bosons
 - Sensitive to initial condition of heavy-ion beam
 - Suggest modification of PDFs

Many thanks to Harald Appelshäuser, Raphaelle Bailhache, Vassu Doomra, Jerome Jung, Jean-Francois Paquet, Klaus Reygers, Shingo Sakai, Florian Seck, Sebastian Scheid, and Ye Zaochen for discussions.

 \bullet v₂ vs. mass will ultimately solve the direct photon puzzle. (LMR: hadronic phase, IMR: partonic phase)

