

HARD PROBES 2024

12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

September 22-27, 2024, Nagasaki, Japan

Future facilities: Electron Ion Collider

P. Antonioli INFN – Bologna on behalf of the ePIC Collaboraton

Quarks as constituents of the hadrons at 60s this year... epic

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way" 1-3, we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to de rive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone 4). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the F

ber $n_t - n_{\overline{t}}$ would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and z = -1, so that the four particles d⁻, s⁻, u⁰ and b⁰ exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks q. Barvons can now be

Quarks as constituents of the hadrons at 60s this year... epic

1 February 1964 Volume 8, number 3 PHYSICS LETTERS Do we really understand **how** the quarks act as constituents of the hadrons? A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of

the triplet as "quarks" 6) g and the members of the

yons and such a and 1⁰ and b⁰

tion. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to de rive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone 4). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the F

exhibit a parallel with the leptons.

A simpler and more elegant scheme can be

constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Barvons can now be

C

Why we still need microscopes for the nucleon?

Nuclear matter is indeed... different!

The usual matter has plenty of open space, localized mass and charge centers

The proton looks different at different x (the size of the probe!): the interactions and the structures are inextricably mixed

Fascinating video by R. Milner and R. Ent here: <u>https://www.youtube.com/watch?v=G-9I0buDi4s</u> (Visualizing Proton Project by the MIT Center for Art, Science & Technology and Jefferson Lab)

P. Antonioli – Congresso SIF

The spin of the proton: still a puzzle

Naive parton model: all spin made by constituent quarks

EMC, PLB 206 (1988) 364 \rightarrow spin of the proton is only partially made by valence quarks!

From unpolarized PDFs we know Δg and Δq_s are sizeable!

Three decades efforts (DESY, BNL, JLAB, CERN, ...) estimates $\Delta g \approx 35\%$ (and we complete ignore it for x < 0.005!)

And we can't neglegt orbital angular momentum

EIC is the machine to unveil the decomposition of the proton spin!

$\Delta\Sigma \approx \mathbf{25\%}$

As for the **mass**, also the **spin** (and charge and magnetic moment) is a global property that **emerges** from the ineraction of its constituents

emergence | I'məːdʒ(ə)ns |

noun [mass noun]

1 the process of becoming visible after being concealed:

EIC science program in five columns

Spin is one of the fundamental properties of matter.

All elementary particles, but the Higgs carry spin.

Spin cannot be explained by a static picture of the hadron. It is the interplay between the intrinsic properties and interactions of quarks and gluons

The EIC will unravel the different contribution from the quarks, gluons and orbital angular momentum.

How the **mass** of visible matter emerge from quark-gluon interactions?

	Binding energy
	Mass
`Atom	0.00000001
Nucleus	0.01
Nucleon	100
Nucleon	100

The EIC will determine an important term contributing to the proton mass → QCD trace anomaly

How are the quarks and gluon **distributed** in space and momentum inside the nucleon & nuclei?

How do the nucleon properties emerge from them and their interactions?

How can we understand their dynamical origin in QCD?

What is the relation to confinement?

Is the structure of a free and bound nucleon the same? How do quarks and gluons, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quarkgluon interactions create nuclear binding?

How many gluons can fit in a proton?

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy?

gluon splitting

guon recombination

EIC: 21st Century Laboratory of **Emergent** Dynamics in QCD

HP2024 - The Electron Ion Collider

DIS is the microscope to make that science!

"When HERA started in 1992, we only had vague notions of the structure of the proton," says Rolf-Dieter Heuer, director for particle-physics research at DESY. "The measurements from HERA showed that the interior of the proton is like a thick, bubbling soup in which gluons and quark-antiquark pairs are continuously emitted and annihilated."

EIC: Understanding the Glue that Binds Us All

The collider: a new electron microscope

Evolution of RHIC (pp/pA/AA) facility at BNL approved by DOE (CD-0) in January 2020

Project Design Goals

- High Luminosity: L= $10^{33} 10^{34}$ cm⁻²sec⁻¹, 10 100 fb⁻¹/year
- Highly Polarized Beams: 70%
- Large Center of Mass Energy Range: $E_{cm} = 29 140 \text{ GeV}$
- Large Ion Species Range: protons Uranium
- Large Detector Acceptance and Good Background Conditions

e: 5 GeV to 18 GeV

• Accommodate a Second Interaction Region (IR)

e beam

p/A beam

p: 41 GeV, 100 to 275 GeV

The collider: energy and intensity frontiers

The collider: towards the land of gluons and quark sea

HP2024 - The Electron Ion Collider

The collider: the nuclei

Worldwide data for collinear PDF and the EIC

DIS processes \rightarrow physics/detector requirements

measure scattered electron \rightarrow e/h PID \rightarrow eCAL calorimetry

∫Ldt: 1 fb⁻¹

semi-inclusive DIS

measure electron and hadrons \rightarrow hadron PID

10 fb⁻¹

exclusive processes

→ hermeticity
→ design IR

10 - 100 fb⁻¹

 \rightarrow <u>ePIC Collaboration</u> formed in 2022

so ePIC is... 90 m long

HP2024 - The

ePIC central detector design

Magnet

New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (μRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

ePIC central detector design

Magnet

New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (μRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

P. Antonioli - The ePIC experiment

ePIC tracking detectors

μVertex Tracker	Barrel Tracker	Outer Barrel M	PGD Tracker	rrel + Disks rrels + Disks Endc	apTracker
		MicroMegas Tracker Main Fu	μRWELL Tracker	MAP Disk	es s GEM-μRWEL Disks
Excellent momentum C and spatial resolution 2 Displaced vertex reconstruction).05%pT⊕0.5% 20μm/pT⊕ 5μm	Provide redundancy and pattern recognition for tracking	Tracking close to hpDIRC detector to improve angular and space point resolution. Redundancy and pattern recognition for tracking	Excellent momentum 0.05 (0.10)% pT⊕1.0 (2.0)% and spatial resolution 30μm/pT⊕ (20 – 40) μm	Provide redundancy and pattern recognition for tracking
Monolithic Active Pixel Sensor → ALICE ITS3 sensor (65 nm) small pixels (21x23 μm) and power consumption (<40 mW/cm ²)		Proven Tec Cylindrical resistive Micromegas technology Used: ATLAS NSW, CLAS12, SPHENIX, MINOS& T2K TPC	hnology		
	EIC Large Area Sensor (LAS), modification of ITS3 sensor with 5 or 6 RSU forming staves as the basic building elements for the Outer Barrel	world's fi	St at epic 24 planar Thin-gap & double amplification (GEM & μRWELL) modules & 2D-strip readout	EIC Large Area Sensor (LAS), staves as the basic building elements for the MAPS disks	hybryd GEM-µRwell → increased gain 3 mm honeycomb 3 mm gas gap

cathode

 μ –Rwell GEM

PCB read-out

ePIC tracking detectors

ePIC tracking detectors

ePIC calorimetry

Backward ECal	Barrel ECal	Forward ECal	Backward HCal	Barrel HCal	Forward HCal
	AstroPix: silicon sensor with 500x500µm ² pixel size developed for the Amego-X NASA mission SoFi Layers with two-sided SiPM readout				wer brite br
		Main F	unction	muon and neutral	
scattered lepton detection	scattered lepton and γ	hadronic final state	neutral detection	detection	particle-flow
\rightarrow very high-precision	detection, hadronic final state characterization	characterization $\rightarrow \pi^0, \gamma$ separation	→ improved jet Energy reconstruction	→ improved jet Energy reconstruction	measurements
PbWO ₄ – crystals	Pb/SciFi sampling part using SiPMs combined with imaging section (4 layers) interleaving Pb/SciFi with AstroPix sensor (500x500 μ m ²) Res: 5.3 % / $\sqrt{E} \oplus$ 1.0 %	Proven Te Tungsten-powder + SciFi SPACAL design Developed through EIC R&D and applied successfully in sPHENIX	chnology Steel + Scintillator SiPM- on-tile	Steel + Scintillator design re-used from sPHENIX	longitudinal segmented Steel + Scintillator SiPM- on-tile Pioneered by CALICE analog HCal High resolution insert next to beam-pipe
SiPM as Photosensors	Use of ASTROPIX in Calorimetry	world's fi	rst at epic		first-time full-size CALICE like calorimeter in collider experiment

ePIC calorimetry

ePIC calorimetry

Backward RICH (pfRICH)	Barrel DIRC (hpDIRC)	Forward RICH (dRICH)	Time-of-Flight (Barrel, Forward)
salarin		η=1.5 Nirror Gas Free Free Free	Barrel TOF: R <0.64 m L=2.4m Forward TOF: Forward TOF: Forward TOF: Forward TOF: R <0.64 m Back face R <0.67 m C < 10 cm Back face
versel	Main Fu	nction	e, π , K, p separation through 20-35 ps ToF
 e, π, K, p separation → π/K 3σ sep. up to 9 GeV/c and 10-20 ps timing → ToF 	e, π , K, p separation $\rightarrow \pi/K 3\sigma$ sep. at 6 GeV/c	e, π, K, p separation $\rightarrow \pi/K$ 3σ sep. up to 50 GeV/c	Forward: 0.15 < p_T < 1.5 GeV/c Forward: 0.15 < p_T < 2.5 GeV/c Accurate space point for tracking
	Proven Technology		
Classical single volume proximity focusing aerogel RICH with long proximity gap (~30 cm)	 High Performance DIRC Quartz bar radiator → Reuse of BaBAR DIRC bars light detection with MCP-PMTs 	 Dual Radiator RICH Aerogel and C₂F₆ gas Spherical Mirrors (6 Az. Sectors) Photon-Sensors tiled on spheres 	
First time use of large-area MCP as	world's fi	rst at epic	
photosensors: HRPPDs (→ Time-of-Flight)		First time use of SiPMs as Photosensors in a RICH	First time use of AC-LGAD (Low Gain Avalanche Detector) in collider detector

Some physics highlights

Disclaimer notice:

- Somehow "personal" selection
- ePIC Collaboration is moving towards TDR: many reference plots are on the making

е

• Tried "Hard Probes angle"

General remark: Heavy quark production in DIS: leading order contribution from photon gluon fusion process \rightarrow a scanner for gluon distributions

Using vector mesons to unveil the proton mass composition epico

0.02 0.04 0.06 0.08

0.1 0.12 0.14 0.16

Generated |-t| GeV²

2288

 \mathbf{CDF} D0LHCb \mathbf{CMS}

ATLAS HERMES

EIC

COMPASS

 10^{-4}

 10^{-3}

 \boldsymbol{x}

 10^{-2}

 10^{-1}

 10^{1}

 10^{0}

 10^{-5}

M. Cerutti, Ph.D. Thesis "Precision phenomenology for nucleon femtography", Univ. Pavia (2024).

 10^{0} - The Electron Ion Collider

SIDIS and TMD (unpolarized)

Q²> 1 GeV² W>3 GeV 0.05 <y <0.95 at least 1 pion! pT>0.1 GeV

- collider flexibility is an asset!
- ePIC is moving from quick MC/standalone generators to full reconstructon flow!

MAPTMD24 extraction 2031 exp. points + 4532 EIC pseudodata points

EIC	# pts.	lumi [fb-1]
5x41	1273	2.85
10x100	1611	51.3
18x275	1648	10

L. Rossi M. Radici A. Bacchetta (

September 25 2024

HP2024 - The Electron Ion Collider

exploring gluons in the nucleon

 $(Q_s^A)^2 \sim c Q_o^2 \left(\frac{A}{x}\right)^{1/2}$

DGLAP and saturation models offer different prediction (Q², A, x dependence) **channels** \rightarrow di-hadron angular correlations, diffractive particle production in eA **strategy** \rightarrow large Q² span at fixed x performing A scan!

hadronization and CNM

EIC White Paper

https://arxiv.org/abs/1212.1701

Basic idea: use Q^2 and v=q p/M to control where hadronization happens

- effect foreseen for D^0/π (based on different FF) might be there also for HF baryons
- usually pre-hadron and absorption in CNM discussed for *mesons* (Kopeliovich et al., Nucl.Phys. A740 (2004) 211-245)

Results for <u>light hadrons only</u> at <u>much lower energy</u> (fixed target e beam 27.6 GeV)

Theory curves from: Li H, Liu Z and I. Vitev, PLB 816 (2021) 136261

C. Wong @ DIS2022

hadronization in ep: Λ_c/D_0

J. Arrington et al., arXiv:2102.08337

- HERA2 $\Lambda_{\rm c}$ total lumi was just **120 pb**⁻¹
- ALICE studies vs event multiplicity (PLB 839 (2023) 137796) to be compared with ep mult. @ EIC!

LHC surprise: universality of fragmentation functions violated seen ofr HF **baryons** already in **pp**

processes and environment are different!

EIC Schedule (official)

CD-3A:

Approve start of long-lead procurements CD-3A items passed final design review All interfaces related to them are frozen Waiting for ESAAB meeting for authorization

CD-2:

Approve prelim. design for all subdetectors Design Maturity: >60% Need "pre-"TDR (or draft TDR) Baseline project in scope, cost, schedule

CD-3:

Approve final design for all subdetectors Design Maturity: ~90% Need full TDR

Current EIC Critic	al Decision Plan
CD-0/Site Selection	December 2019 √
CD-1	June 2021 √
CD-3A	March 2024 √
CD-3B	October 2024
CD-2/3	April 2025
early CD-4	October 2032
CD-4	October 2034

September 2022 EIC received \$138M DOE Inflation Reduction Act funding \rightarrow CD-3A

EIC Schedule (best guess from project management)

ePle

CD-3A:

Approve start of long-lead procurements CD-3A items passed final design review All interfaces related to them are frozen Waiting for ESAAB meeting for authorization

CD-2:

Approve prelim. design for all subdetectors Design Maturity: >60% Need "pre-"TDR (or draft TDR) Baseline project in scope, cost, schedule

CD-3:

Approve final design for all subdetectors Design Maturity: ~90% Need full TDR

Current EIC Critic	al Decision Plan
CD-0/Site Selection	December 2019 √
CD-1	June 2021 √
CD-3A	March 2024 √
CD-3B	October 2024
CD-2/3	April 2025
early CD-4	October 2032
CD-4	October 2034

September 2022 EIC received \$138M DOE Inflation Reduction Act funding \rightarrow CD-3A

Updated Project Schedule: based on the actual appropriated FY24 funding (\$98M), on uncertain FY25 budget scenarios (President's Budget is only ~\$113M)

Updated EIC Criti	cal Decision Plan
CD-0/Site Selection	December 2019 √
CD-1	June 2021 √
CD-3A	March 2024 √
CD-3B Review	January 7-9 2025
CD-2/3 Review	End of 2025
early CD-4	December 2034?

(courtesy from R. Ent @ QNP2024)

Summary and outlook

- PIC
- EIC is a unique, high-energy, high-luminosity, polarized beam collider for the ultimate **understanding of QCD**: the only new collider in the 15-20 years
- ePIC Collaboration formed in 2022 and ePIC detector on track towards **TDR** (CD-2 \rightarrow CD \rightarrow 3)
- The ePIC detector was designed to fullfill the physics requirements: several new technologies will be also implemented → benefit for the larger community

new microscope delivery time:8-9 years to first collisions for physics

a robust "early physics program" being discussed: phased-approach for accelerator

EIC physics will provide "unique baseline input" (PDF, nPDF, hadronization, ..) to "Hard Probes Conference" physics, stay tuned!

Some additional references (and many credits for some slides borrowed by these colleagues):

- EIC overview <u>R. Ent @QNP 2024</u>
- ePIC detector <u>S. Dalla Torre @ CERN Deteector Seminar</u>
- TMD/GPD: <u>S. Fazio @ Mainz 2023</u>
- exclusive procesess/diffraction + far forward/backward detectors <u>A. Jentsch @ Diffraction 2024</u>

EIC: luminosity vs physics reach

Nucleon spin structure function

Double-spin asymmetries

Provide access to g_1 : spin-dependent structure function

Access to unexplored Q²-x region, while allowing benchmark to existing data

Solving the proton spin puzzle

1 $\Delta\Sigma(\mu) + \Delta G(\mu) + L_q(\mu) + L_g(\mu)$ 2 2 quark and gluon spin orbital angular momentum R. Abdlul Kalek at. al (EIC Yellow Report) Nucl. Phys A 1026 (2022) 122447 2.0DSSV14 dataset 1.5 $\int_{10^{-6}}^{10^{-3}} (\Delta g + 1/2\Delta \Sigma) \, dx$ 1.0 0.50.0

DIS, UPC and LHC/EIC/RHIC

from ALICE Collaboration, FOCAL LoI, <u>CERN-LHCC-2020-009</u>

Nice EIC & LHC & RHIC complementarity to kinematically map the nucleon....

B. Gilbert talk at this conference

X

PID technlogies and momentum coverage

e- π separation

Cherenkov PID complements ECAL effort, especially at low momenta/backward region

hadron identification: SIDIS (→ TMD) , heavy flavour ToF complements Cherenkov PID

more than one technology needed to cover the entire momentum ranges at different rapidities

ePIC Collaboration

https://www.bnl.gov/eic/epic.php

ePIC Initiated in July 2022

> 850 collaborators

175 institutions25 countries

67/175 – 35% US institutions

EIC User Group: 1537 members/40 countries

DOE national labs partnership (not incl. BNL/JLAB)

ePIC US Universities partnerships

ePIC international contributions/interests

EIC User Group: 1537 members/40 countries

ePIC international contributions/interests (II)

 $\Lambda_{\rm c}/{\rm D}^0$

