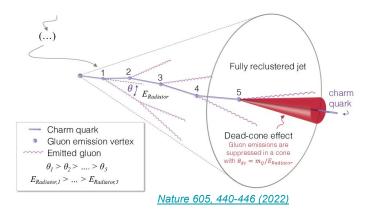


Dead cone effect and charm quark mass effects in high- p_T D jets

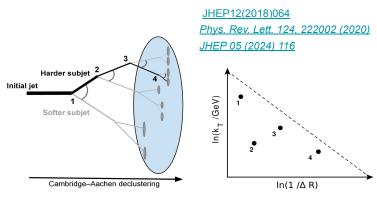

Jelena Mijušković

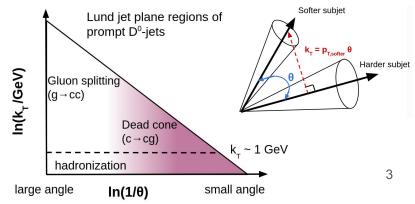
on behalf of the CMS collaboration

Hard Probes 2024 25 September 2024

The dead-cone effect in QCD

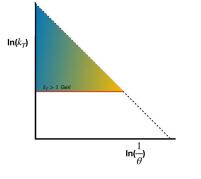
Solution radiation by a particle of mass *m* and energy *E* is suppressed within a cone of angular size *m/E* around the emitter

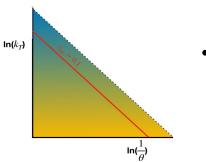

- Sizeable implications of the dead-cone effect is expected for charm and beauty quarks
- > Experimental measurement of the dead-cone effect very challenging
- The development of declustering techniques reconstructing the evolution of the jet shower, access to the the splittings at the smallest angles


- Measurements sensitive to the heavy-quark mass and how it affects the jet shower inputs to improve the description of heavy-flavour jet showers
- > Dead-cone can potentially be used to understand medium-induced radiation in head-on heavy ion collisions

Lund plane of D jets in CMS

- > Declustering using Cambridge-Achen algorithm:
- \rightarrow the branch containing the heavy flavour is followed at each step
- \rightarrow kinematics of the complementary untagged prong is registered
- \rightarrow kinematics of all the emissions can be studied (Lund plane)

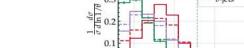

- Measurement of the angular structure of jets containing a prompt D⁰ meson and of inclusive jets in pp collisions at the LHC at a center-of-mass energy of 5.02 TeV
- > High- p_{τ} jet in range **100-120 GeV**
- description in the framework of perturbation theory
- visualization of a sizeable impact of the dead cone effect
- > Measurement in range doable in PbPb too (**R=0.2**, high jet p_T)


Lund plane of D jets in CMS

Selecting one emission per jet by applying **grooming algorithms**:

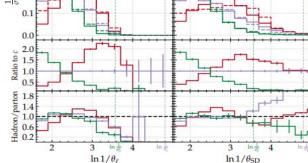
Late- k_t groomer (θ_1)

- most collinear among the perturbative splittings in the jet tree
- the latest splitting that satisfies a hard k_{T} cut ($k_{T} > 1 \text{ GeV}$)



Modified SoftDrop groomer (θ_{SD})

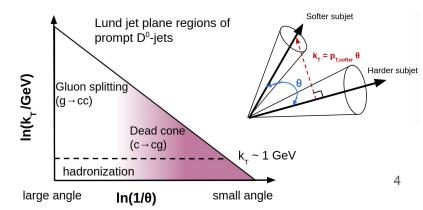
• first splitting that satisfy:


 $z_{cut} = 0.1$

 $\beta = 0$ k_T > 1 GeV

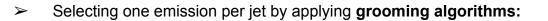
0.4 Late-k

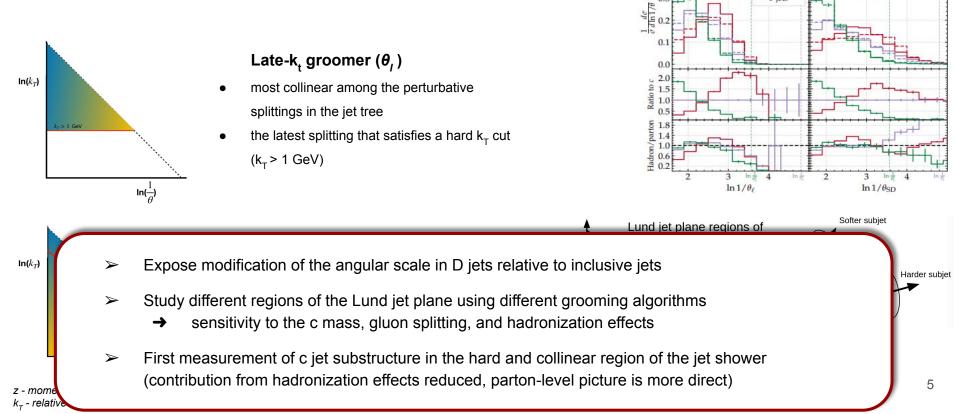
0.3



Phys.Rev.D 107 (2023) 9, 094008

Inclusive


c-jets
b-jets


SD $\beta = 0, z_{cut} = 0.2$

z - momentum fraction between the two prongs k_{τ} - relative transverse momentum of the pair

Lund plane of D jets in CMS

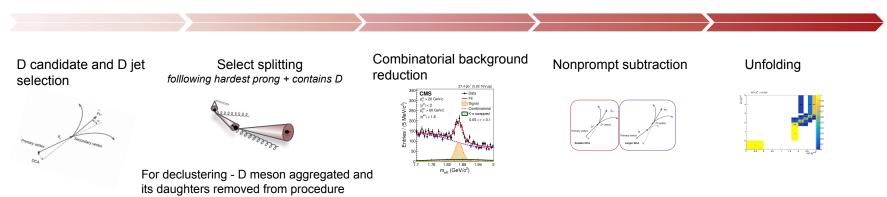
Phys.Rev.D 107 (2023) 9, 094008

Inclusive

c-jets
b-jets

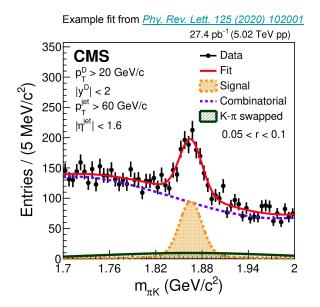
SD $\beta = 0, z_{cut} = 0.2$

0.4 Late-k

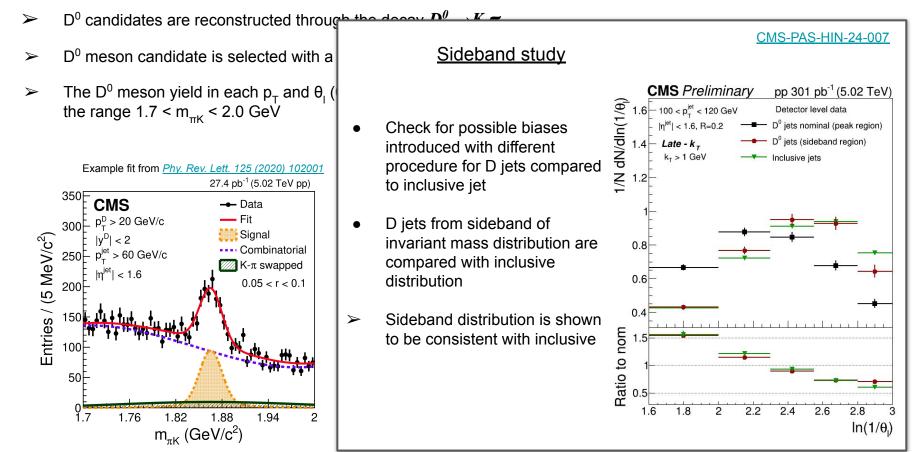

0.3

Analysis workflow

Inclusive jets

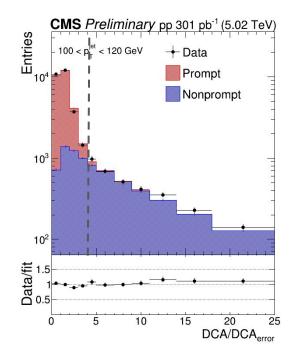

D-tagged jets

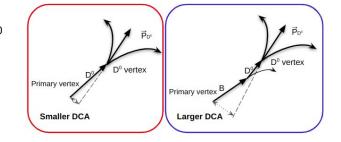
6


D-tagged jets

- > D⁰ candidates are reconstructed through the decay $D^0 \rightarrow K \pi$
- > D^0 meson candidate is selected with a $p_T > 4$ GeV and |y| < 1.2
- > The D⁰ meson yield in each p_T and $\theta_I (\theta_{sd})$ interval is extracted with a fit to the invariant mass distributions in the range 1.7 < $m_{\pi K}$ < 2.0 GeV

- Mass distribution fitted by:
 - → Double Gaussian to model the signal
 - → Gaussian to model the D⁰ invariant mass shape of candidates with wrong mass assignment (swap)
 - → Powerlaw to model the combinatorial background
- The shape of signal and swapped components is fixed by MC

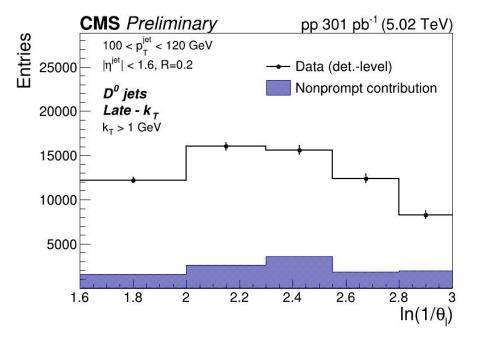

D-tagged jets



8

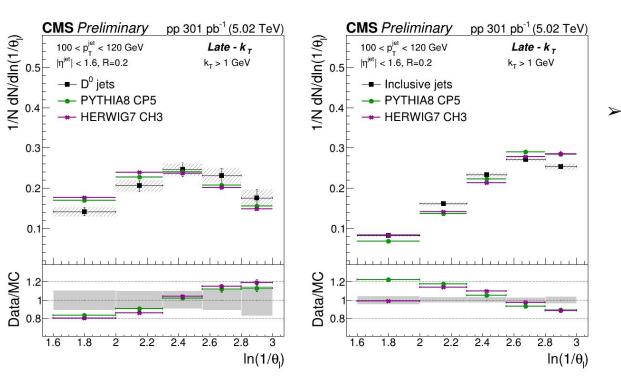
Contributions from nonprompt D

- > The reconstructed D^0 signal in data includes both prompt D^0 and nonprompt D^0
- To suppress nonprompts selection applied on Distance of Closest Approach (DCA) normalized by its error



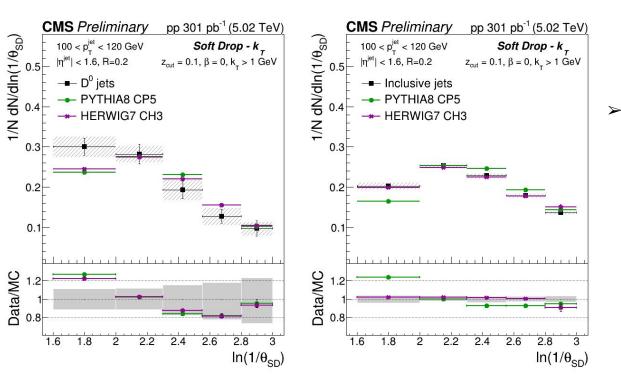
- Selection on DCA significance DCA/DCA_{err} < 4
- Contributions of nonprompts still present
- Fractions of prompt determined by performing template fit of DCA significance
- The shape of **prompts** and **nonprompts** distribution extracted from simulation

Nonprompt subtraction


The nonprompt D⁰ subtraction causes a reduction of the uncorrected yield and a change in the shape of the substructure

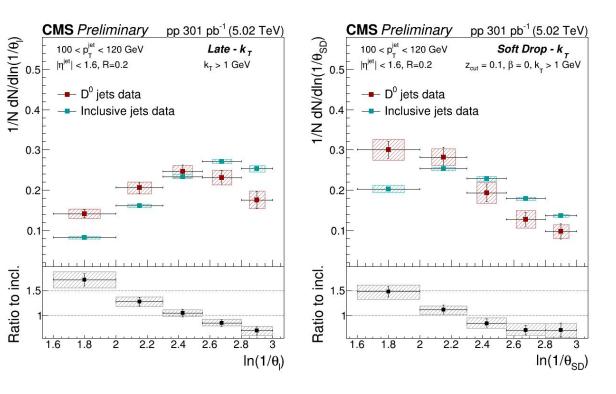
- The nonprompt D⁰ meson contribution is found to be around **15%**
- The nonprompt and prompt D⁰ templates derived using PYTHIA8 CP5
 - Nonprompt fraction from HERWIG7 compatible in shape with the ones derived from PYTHIA8

Results: late- k_{τ} selected splitting angle


- Measured detector-level distributions are corrected to the particle level using corrections derived from simulation
- Bin-to-bin migrations due to detector effects two-dimensional unfolding of the jet p_{T} and $\theta_{I}(\theta_{sp})$

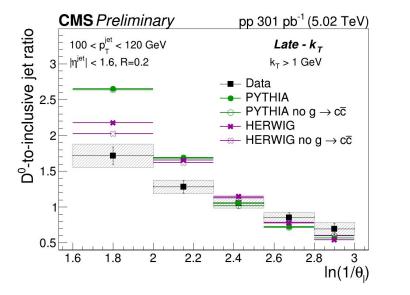
- Distributions are compared to **PYTHIA8** and **HERWIG7**
 - ⇒ Agreement with D⁰ jets within experimental uncertainties
 - ⇒ PYTHIA8 and HERWIG7 predictions consistent between each other for D⁰ jets

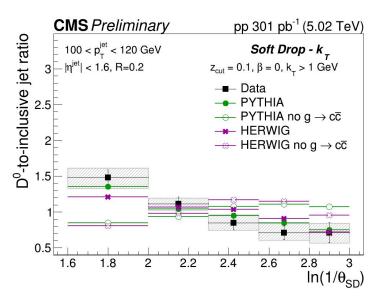
Results: SD&k_{τ} selected splitting angle


- Measured detector-level distributions are corrected to the particle level using corrections derived from simulation
- Bin-to-bin migrations due to detector effects two-dimensional unfolding of the **jet** \mathbf{p}_{T} and $\mathbf{\theta}_{I}(\mathbf{\theta}_{sp})$

- Distributions are compared to PYTHIA8 and HERWIG7
 - ⇒ Agreement with D⁰ jets within experimental uncertainties
 - ⇒ In inclusive case HERWIG7 describes the data better than PYTHIA8

Results: D⁰ jets and inclusive jets


• Fully corrected θ_{I} and θ_{SD} distributions for D⁰ jets and inclusive jets and their ratios


- Shift observed towards bigger angles with respect to the inclusive jets - expected from dead cone effect
- More prominent shift observed with late-k_T algorithm

Results: D⁰ jets and inclusive jets

- > Study of contribution of the gluon splittings to the substructure of prompt D^0 jets
- Impact checked with PYTHIA8 and HERWIG7 generators for the ratio of the distributions of prompt D⁰ jets to inclusive jets

Late- k_{T} : the gluon splitting contribution is negligible and has an effect mostly at large angles.

SD: the gluon splitting contribution stronger

 emissions at larger angles than the ones found by late-k_τ

Summary

- Measurement of splitting angles using two different groomers, late-k_T and modified Soft Drop, for D⁰ jets and inclusive energetic jets of 100 < p_{Tiet} < 120 GeV performed
- Measurement performed using 5.02 TeV pp data from 2017 collected by CMS experiment
- First measurement of charm quark jet substructure that probes the hard and collinear region of the jet shower
 - ➔ b-jets results Lida's talk
- The comparison of the angular distribution of late-k_T and Soft Drop splittings in prompt D⁰ jet and inclusive jets shows a shift toward larger angles for heavy-flavour splittings
- > The shift observed in late- k_{τ} consistent with dead cone effect
- Soft Drop selected splittings shown to be more sensitive to effects of gluon splitting

Thank you for your attention!