Radius dependent jet quenching measurements from ATLAS https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2024-03/ Anne M. Sickles, for the ATLAS Collaboration September 23, 2024

existing, precise, measurements of jet R_{AA} in PbPb collisions

how do we understand the observed suppression in terms of geometry & jet properties?

existing, precise, measurements of jet R_{AA} in PbPb collisions

how do we understand the observed suppression in terms of geometry & jet properties?

mass/substructure dependent RAA

M. Rybar (the next talk)

dijets & jet v_n

this talk, X. Wang (17:10 Monday), poster A. Romero

existing, precise, measurements of jet R_{AA} in PbPb collisions

how do we understand the observed suppression in terms of geometry & jet properties?

mass/substructure dependent RAA

M. Rybar (the next talk)

dijets leading jet: very short path length thourgh the QGP, nearly no energy loss

subleading jet: lots of interactions through the QGP, stronger quenching of the jet

new method for studying xJ

2205.00682

new method for studying x_J

2205.00682

 $dN_{\rm pair}^{\rm AA}$

new method for studying x_J

2205.00682

 $dN_{\rm pair}^{\rm AA}$

absolutely normalized distributions show that *balanced* jets are preferentially suppressed

suppression of balanced dijets

2205.00682

suppression of **both** jets important!

how do the conclusions about dijets depend on the jet radius?

- 0.6 jets
- leading dijets, required to have:
 - $|\Delta \phi| > 7\pi/8$
 - |y_{jet}| < 2.1
 - $p_{T_2}/p_{T_1} > 0.32$
- remember: not all jets at a given p_T are part of a leading dijet
 - analysis

arXiv:2407.18796

• do the exact same analysis as for the R = 0.4 jets (2205.00682) for R = 0.2, 0.3, 0.4, 0.5,

• jets which are not part of a leading dijet that meets our criteria are excluded from the

arXiv:2407.18796 poster: Anabel Romero

how does this suppression change with x_J?

increasing **R**

arXiv:2407.18796

poster: Anabel Romero

11

dijet yields integrated over xJ

dijet yields

$$\frac{1}{\langle T_{AA} \rangle N_{\text{evt}}^{AA}} \int_{0.32 \times p_{\text{T},1}}^{p_{\text{T},1}} \frac{\mathrm{d}^2 N_{\text{pair}}^{AA}}{\mathrm{d}p_{\text{T},1} \mathrm{d}p_{\text{T},2}} \mathrm{d}p_{\text{T},2}$$

dijet yields

integrate over p_{T_2} from 0.32 < x_J < 1.0 \rightarrow dijet yields as a function of p_{T_1} (swapping

dijet yields

integrate over p_{T_2} from 0.32 < x_J < 1.0 \rightarrow dijet yields as a function of p_{T_1} (swapping

dijet yields

integrate over p_{T_2} from 0.32 < x_J < 1.0 \rightarrow dijet yields as a function of p_{T_1} (swapping

Raapair vs R

(a)

leading

subleading

arXiv:2407.18796

(a)

leading

arXiv:2407.18796

D^{pair}

(a)

(b)

leading

arXiv:2407.18796

RAApair vs R

- R = 0.6 jets less suppressed that R = 0.2jets for both leading and subleading jets
- opposite trend as suggested from ALICE single jet results (2303.00592)
- the results are not directly comparable
 - single jets vs dijets
 - different kinematic range
 - different rapidity range

summary

- presented comprehensive study of the jet radius dependence of dijet production
- suppression of balanced dijets is radius independent and larger than that of imbalanced dijets
 - imbalanced dijets are less suppressed with increasing jet radius
- the R_{AA}^{pair} values for leading and subleading jets increase with increasing R
- comprehensive study provides new information about jet quenching over a wide kinematic range

all ATLAS Heavy Ion Results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>HeavyIonsPublicResults</u>

backups

ratio of subleading / leading KAA^{pair}

little R dependence to subleading / leading suppression in central collisions; maybe some p_T dependence for R = 0.6 dijets

 $U^- IU^{70}$ arXiv:2407,18796

dijets at 2.76 TeV

- shift from balanced jets to imbalanced jets makes sense in a surface bias picture
- however, these distributions are sensitive only to the shape (area normalization)
- which jets are actually being suppressed?
- also, what's that peak?

1706.09363

 $_{19}x_J = momentum of jet 2 / momentum of jet 1$

dijets at 2.76 TeV

- shift from balanced jets to imbalanced jets makes sense in a surface bias picture
- however, these distributions are sensitive only to the shape (area normalization)
- which jets are actually being suppressed?
- also, what's that peak?

1706.09363

 $_{19}x_J = momentum of jet 2 / momentum of jet 1$

comparison of 5.02 TeV & 2.76 TeV

x_J distributions have consistent shapes at the two collision energies 2205.00682

