

Probing bottom quark mass effects in jet substructure with CMS using a novel technique to cluster the b-hadron decays <u>CMS-PAS-HIN-24-005</u>

Lida Kalipoliti (she/her) on behalf of the CMS collaboration *LLR, École Polytechnique*

HARD PROBES 2024, 25 September 2024

Heavy flavor jets

In theory

Lida Kalipoliti | LLR - École Polytechnique

Heavy flavor jets

Lida Kalipoliti | LLR - École Polytechnique

Heavy flavor jets

In practice

Lida Kalipoliti | LLR - École Polytechnique

Jet substructure

The primary Lund jet plane

- Recluster jet constituents in angular order
- Decluster from larger to smaller angles following the harder subjet
- Register
 ΔR² = Δy² + Δφ²
 k_T = p_{T,2} · ΔR

Lida Kalipoliti | LLR - École Polytechnique

Jet substructure

Lida Kalipoliti | LLR - École Polytechnique

HP 2024 | 25 September 2024 6

0

Heavy flavor decay impact

Heavy hadron decay daughters do not follow angular ordering

Lida Kalipoliti | LLR - École Polytechnique

HP 2024 | 25 September 2024 7

0

0

TO DO:

Heavy flavor decay impact

Heavy hadron decay daughters do not follow angular ordering

Lida Kalipoliti | LLR - École Polytechnique

Heavy flavor decay impact

Heavy hadron decay daughters do not follow angular ordering

Previously on b jet substructure...

b jet shapes

b jet groomed observables

Wed 25/09 09:20

Lida Kalipoliti | LLR - École Polytechnique

HP 2024 | 25 September 2024 10

g to bbar

Partial b hadron reconstruction

Treat b hadron decays by identifying the decay products in the jet and cluster them into **partially reconstructed b hadron**

Lida Kalipoliti | LLR - École Polytechnique

Partial b hadron reconstruction

Treat b hadron decays by identifying the decay products in the jet and cluster them into **partially reconstructed b hadron**

Lida Kalipoliti | LLR - École Polytechnique

HP 2024 | 25 September 2024 12

0

0

Analysis workflow

Dataset and jet kinematics 5.02 TeV low PU pp collisions

 $100 < p_T^{jet} < 120 \text{ GeV}, |\eta^{jet}| < 2$

Observables charged particle R_g, z_g and $z_{b,ch} \equiv p_T^{b,ch} / p_T^{jet,ch}$ Soft drop parameters

$$z_{cut} = 0.1, \beta = 0$$

$$\Rightarrow p_{T,2} / (p_{T,1} + p_{T,2}) > 0.1$$

1-prong (fail soft drop) or
k_T < 1 GeV (hadronization) in</p>
dedicated bin for unfolding

b jet selection and corrections

b tagging

b jets selected with <u>ParticleNet</u> at very high purity working point

But...

Sample includes jets with more than one b hadron

Residual background subtraction

Fit the mass of the reconstructed b hadron with MC templates

Unfolding to the charged-particle level b jet

Lida Kalipoliti | LLR - École Polytechnique

Inclusive jet results

Groomed momentum balance

CMS

Lida Kalipoliti | LLR - École Polytechnique

Inclusive jet results

CMS

Groomed momentum balance

16

b jet results

Groomed jet radius

Groomed momentum balance F

Fragmentation function

Lida Kalipoliti | LLR - École Polytechnique

b jet results

Groomed jet radius

Groomed momentum balance Fra

Fragmentation function

Groomed jet radius

Groomed momentum balance

Lida Kalipoliti | LLR - École Polytechnique

Groomed jet radius

Lida Kalipoliti | LLR - École Polytechnique

HP 2024 | 25 September 2024 20

Groomed momentum balance

Groomed jet radius

Groomed momentum balance

Lida Kalipoliti | LLR - École Polytechnique

pp 301 pb⁻¹ (5.02 TeV) **CMS** Preliminary b jets / inclusive jets $\begin{array}{l} \text{anti-k}_{\tau},\,\mathsf{R}=0.4\text{ jets}\\ 100 < p_{\tau}^{\text{jet}} < 120\text{ GeV},\,|\eta^{\text{jet}}| < 2\end{array}$ 1.8 1.6 Soft drop (charged particles) $z_{cut} = 0.1, \beta = 0, k_{-} > 1 \text{ GeV}_{-}$ 1.4 1.2 ----0.8 0.6 — Data Pythia8 CP5 0.4 Pythia8 CP5 FSR up Pythia8 CP5 FSR down 0.2 Herwia7 CH3 Ratio to data Syst. @Stat. 1.5 0.5 0 0.2 0.4 0.6 1.2 1.4 1.6 1.8 0.8 2 0 1 $\ln(R/R_{o})$ 0.2 0.1 0.05 0.4 0.3 Ra V

Groomed jet radius

Groomed momentum balance

Lida Kalipoliti | LLR - École Polytechnique

CMS

Lida Kalip

Groomed jet radius

Groomed momentum balance

ember 2024 23

0.45

0.5

Zg

0.4

Prospects in HI collisions

Isolate medium induced radiation in dead cone region

Phys. Rev. D 107, 094008

Lida Kalipoliti | LLR - École Polytechnique

Conclusion

b hadron decays crucial for b jet substructure measurements
 ⇒ developed a tool to partially reconstruct the b hadron

First time we clearly observe the suppression of collinear emissions for b jets (dead cone)

Separation of b hadron decay from QCD cascade can be used for other observables in the future (EECs, generalized angularities, masses)

Lida Kalipoliti | LLR - École Polytechnique

Backup

Lida Kalipoliti | LLR - École Polytechnique

Decay product identification

Binary classifier

- Gradient boosted decision tree
 - → Signal = charged decay products
 - → Background = charged particles from PV
- Inputs
 - → Track properties (eg. impact parameter)
 - → Associated SV properties (eg. flight distance)

Lida Kalipoliti | LLR - École Polytechnique

Agreement between the detector and the particle level

Impossible to "unfold" the decay effects

Multiple bin migrations to "decay angle"

Lida Kalipoliti | LLR - École Polytechnique

Systematic uncertainties

Both for inclusive and b jets

- Statistical uncertainty
- Matrix response statistical uncertainty (jackknife resampling)
- Shower and hadronization (unfolding with HERWIG7 CH3 vs PYTHIA8 CP5)
- ► FSR and ISR scale (x2 or x1/2 independently in PYTHIA8 CP5)
- Jet energy resolution (vary JER scale factors)
- Jet energy scale (vary JEC per source)
- Tracking efficiency (randomly discard 3% of reconstructed tracks in PYTHIA8 CP5)

Only for b jets

- **b jet fraction model dependence** (template fit with HERWIG7 CH3 vs PYTHIA8 CP5)
- Light and charm misidentification rate (vary light+c fraction in template fit)
- b tagging efficiency (vary b tagging efficiency scale factors)

Systematic uncertainties

Leading sources related to physics model and b tagging

- Shower and hadronization (unfolding with HERWIG7 CH3 vs PYTHIA8 CP5)
- ► FSR and ISR scale (x2 or x1/2 independently in PYTHIA8 CP5)
- b tagging efficiency (vary b tagging efficiency scale factors)

Lida Kalipoliti | LLR - École Polytechnique

Other substructure observables

PYTHIA8 HAD $e^+e^- \rightarrow b \bar{b}$ decaying hadrons PYTHIA8 HAD $e^+e^- \rightarrow b \bar{b}$ decaying hadrons 4.04.0 PYTHIA8 HAD $e^+e^- \rightarrow b \bar{b}$ stable hadrons PYTHIA8 HAD $e^+e^- \rightarrow b\,\bar{b}$ stable hadrons $(1/\sigma) \frac{d\sigma}{d\sigma} d\log_{10} e_2^{1/2}$ PYTHIA8 PS $e^+e^- \rightarrow b\bar{b}$ shower only PYTHIA8 PS $e^+e^- \rightarrow b\bar{b}$ shower only $(1/\sigma) d\sigma/d\log_{10} e_2^2$ $R = 0.4, \sqrt{s} = 200 \, \text{GeV}$ $R = 0.4, \sqrt{s} = 200 \, \text{GeV}$ $\Delta_{ij} \sim \theta_{ij}$ $\Delta_{ij} \sim \theta_{ij}$ 1.0 1.0 -2 -1-3-3-2-4 $\log_{10}e_2^2$ $\log_{10} e_2^{1/2}$

b hadron decay effect in energy-energy correlators

<u>Oleh Fedkevych, BOOST 2023</u>

Lida Kalipoliti | LLR - École Polytechnique