

Probing hadronization and quark-gluon plasma using collinear-drop jet observables at RHIC

Yang-Ting Chien Georgia State University and Jefferson Lab Theory Center

In collaboration with Oleh Fedkevych

September 23rd, 2024

1

Outline

- Soft drop and collinear drop
- Jet angularity and flattened jet angularity
- Factorization
- Hadronization and transfer matrix
- Medium modification
- Prediction for STAR

Soft drop

Collinear drop

- Conventionally only particles surviving soft drop are studied. However, one could study the dropped particles as well
- One could even pick out an intermediate branch with two soft drop conditions

mass is the collinear drop AM? MSD

Jet angularity

Berger, Kucs, Sterman, PRD 68 (2003) 014012 Larkoski, Thaler, Waalewijn, arXiv: 1408.3122

Flattened jet angularity

Flatten jet angularity generalize The functional form of W(0) $\sum_{i \in j \in t} Z_i W(0)$ is talk we focus on annulus pt fraction Z

$$\Psi(r = 0.1) \text{ for } 200 \text{ GeV Jets}$$

$$\downarrow 0 \text{ fraction}$$

Factorization

Hadronization and transfer matrix (TM)

Transfer matrix extracted from Moute Carlo (Pythia & in this talk)

- The information on correlation between partons and hadrons in each event is embedded
- The clearly visible off-diagonal structures indicate strong bin-migration caused by non-perturbative effects
- Unlike the approach of the shape functions the TM are not bounded to any particular functional form

Korchemsky, Sterman, 99'

Chien, Fedkevych, Reichelt, Schumann, JHEP06(2020)064

TM for collinear drop

I-ladronization effect is of O(1) effect for collinear drop observable $\Delta M^2 = M_{ungrooued} - M_{SD}$ Iwith Zut = 0, $\beta = 0$

Transfer matrices for quark and gluon jets being extracted from Pythias and studied. Hadronization effect different in peak and tail regions.

TM for annulus pt fraction

Medium effects in heavy ion

Prediction for STAR

Summary

- Collinear drop observables enhances the sensitivity to intermediate, soft radiation, targeting physics goals in heavy ion
- Flattened jet angularity is introduced which give a difference approach to probe QCD phase space
- These observables receive significant/intriguing hadronization corrections in pp collisions. Further studies using the transfer matrix approach are necessary to establish the baseline
- Prediction of collinear drop jet mass for STAR is provided

Collinear drop @ LEP

- Hadronization effect is significant throughout the whole region
- At the reco level, data and MC agree quite well
- Detector effect is significant