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Outline

• The new X-SCAPE multi-stage framework

• 3D-Glauber+MUSIC (bulk)

• I-MATTER + PYTHIA + MATTER (hard)

• A new working model for small systems in p-p and p-A 

• Exact energy momentum conservation

• Calculations with and without Final State energy loss

• Correlations between hard probes and bulk dynamics
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X-SCAPE framework
• A new framework that allows the user to determine the order of operations

• Time can go backwards and forwards ! 

• Backward evolution allows for natural implementation of ISR. 

• Can be run with an arbitrary number of modules. 
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X-SCAPE module: 3D Glauber + MUSIC
• Nucleons have multiple hot spots within them.

• Strings connect pairs of hot spots

• String 4-momentum and baryon density seeds hydro simulation

• Hydro evolves producing particles

• Remnants go down beam line.

4

hydro

C. Shen and B. Schenke, PRC97 024907 (2018), PRC105, 064905 (2022)



*T. Sjostrand
Phys.Lett.B 157 (1985) 321.

X-SCAPE module: I-MATTER
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• Call Pythia (ISR-FSR-OFF) to generate MPI scatterings

• Start each parton at                    and evolve up to 𝑄2 = −1 GeV2. 

• A well-established method of generating ISR*

• Run Matter backwards in time with  i-MATTER.

• Parton energy increases with splits, keep track of position   

• Final parton at most negative time is the parent. 

Framework can handle Initial State-E-loss, current results only include Vacuum shower

Evolution backwards in time

𝑄2 = −𝑝𝑇
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Physical Model
• Hard initial state partons are included in a hot spot

• Hard partons scatter with ISR and FSR.

• Hard energy removed from nucleons, not available for hydro evolution

• Some strings get pulled out by hard processes, fragmented by string breaking

• Strings that don’t get pulled out are liquified into a fluid, evolves and produces particles

• More jet energy → more fragmentation hadrons, less hydro (Cooper-Frye) hadrons
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Only hydro hadrons



Hadrons with no final state energy loss
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Set min Ƹ𝑝𝑇,𝑚𝑖𝑛 in Pythia ~ 8 GeV, softer phenomena modelled by hydro. 
Hadron spectra in p-p and p-A.

Minimum Bias



Jets with no final state energy loss
• Jets in p-p and p-A

• Simple background subtraction: only use fragmentation hadrons in jet clustering
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Identified hadrons and Bayesian calibration
• Fits improved by minimal Bayesian calibration (15 parameters)

• The low 𝑝𝑇 hadron yields improved by soft particle production from hydro 
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PYTHIA parameters

I-MATTER parameter

3D Glauber parameters

Hydro parameters

Need a large-scale Bayesian analysis (Note each event has a 3 D hydro)!



Does the hydro medium induce final state E-loss?

• Simulations with energy loss in MATTER turned-on 

• No significant suppression in jets and leading hadrons
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• Explanation: the medium is too small and too short lived to induce significant 
modification of jets and hadrons. 

• Many events with partons traveling away from QGP, 

• Choose event with partons close to and going through QGP (below) 

• partons have escaped by 1.5 fm/c
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Does the hydro medium induce final state E-loss?

Time

Freeze-out SurfaceSee Yasuki’s slides



p-p event activity as a function of jet pT

• Event activity modification in p-p with jet momentum

• We calculate the 𝐸𝑇 from both Cooper-Frye hadrons and fragmentation hadrons

• Forward Event Activity increases with 𝑝𝑇 , reaches a peak and then decreases.

• Mid rapidity Event Activity increases monotonically with jet 𝑝𝑇
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Similar hard soft correlation in p-A
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• No shadowing used yet, will modify results slightly
• Similar rise and fall in event activity with jet pT .

C-F. + Frag.
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Fragmentation



Preliminary comparison with Experiment
• Low 𝑝𝑇 rise and comparison with ALICE data.

• Note: model partially calibrated on hadronic spectra only.
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PRELIMINARY 
200K events



Preliminary comparison with Experiment
• High 𝑝𝑇 turn over and decrease of event activity

• Work in progress.
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Summary and upcoming results

• New multi-stage hard-soft event generator for p-p and p-A.

• For any multiplicity!

• 3 D Glauber generates multiple hot spots in a nucleon

• MPI interactions in PYTHIA generates hard scatterings

• ISR done with i-MATTER, FSR done with MATTER

• Energy of incoming parent partons subtracted from hot spots

• Hadrons from depleted hydro and from string fragmentation

• Very good description of data on particle and jet spectra.

• Positive correlation between EA and low 𝑝𝑇 jets (ALICE data). 

• Negative energy correlation at 𝐸 > 100GeV (Future work, ATLAS 
data). 
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Workflow in X-SCAPE
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X-ion collisions with a Statistically and Computationally 
Advanced Program Envelop (X-SCAPE)

• Small systems in p-p, p-A etc.
• Asymmetric systems such as d-A, A-A. 

• Require strong correlation between 
hard and soft sector 

• In both initial and final state.

• Lower energy A-A, for Beam Energy 
Scan
• Require concurrent hydro + cascade 

• Extension to e-A, for EIC.
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JETSCAPE: a p-p and A-A generator

• Framework controls order of modules and information flow

• Modules are user defined, replaceable, divisible

• Can be run in pure bulk, pure hard, or interactive modes
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JETSCAPE results (only hard sector)

• Big picture or base model (141 different data sets) vs. Fine structure 
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