

Flavor hierarchy of parton energy loss in quark-gluon plasma from a Bayesian analysis

Guang-You Qin Central China Normal University

> Hard Probes 2024 Nakasaki, Japan September 23-27, 2024

Jets are versatile probes of QGP

Jet quenching: energy loss, broadening, substructure, medium response

Evidences for jet quenching

General framework for jet quenching study

pQCD factorization: Large-p_T processes may be factorized into long-distance pieces in terms of PDF & FF, and short-distance parts describing hard interactions of partons.

General framework for jet quenching study

Jet-medium interaction

Bjorken 1982; Bratten, Thoma 1991; Thoma, Gyulassy, 1991; Mustafa, Thoma 2005; Peigne, Peshier, 2006; Djordjevic, 2006; Wicks et al (DGLV), 2007; GYQ et al (AMY), 2008; ... BDMPS-Z: Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov
ASW: Amesto-Salgado-Wiedemann
AMY: Arnold-Moore-Yaffe (& Caron-Huot, Gale)
GLV: Gyulassy-Levai-Vitev (& Djordjevic, Heinz)
HT: Wang-Guo (& Zhang, Wang, Majumder & GYQ, Zhang, Hou)

Flavor hierachy of parton energy loss

He, Luo, Wang, Zhu, PRC 2015; Cao, Luo, GYQ, Wang, PRC 2016 ; PLB 2018; etc.

Flavor hierarchy of high p_T hadron suppression

Combination of NLO-pQCD + LBT + Hydro can explain the flavor hierarchy of R_{AA} .

W. J. Xing, GYQ, S. Cao, H. Xing, PLB 2022

Constrain E-Loss using data-driven method

The theoretical framework:

$$\frac{1}{\langle N_{\rm coll} \rangle} \frac{d\sigma_{\rm AA \to hX}}{dp_{\rm T}^h} = \sum_j \int dp_{\rm T}^j dx dz \frac{d\sigma_{\rm p'p' \to jX}}{dp_{\rm T}^j} (p_{\rm T}^j) W_{\rm AA}(x) D_{j \to h}(z) \delta\left(p_{\rm T}^h - z(p_{\rm T}^j - x\langle \Delta p_{\rm T}^j \rangle)\right)$$

 $\langle \Delta p_T^j \rangle$ is the average energy loss for parton j, $W_{AA}(x)$ is the energy loss distribution with $x = \Delta p_T^j / \langle \Delta p_T^j \rangle$.

Some works on extracting $\langle \Delta p_T \rangle$ and $W_{AA}(x)$

- F. Arleo, PRL 2017
 - Take $W_{AA}(x)$ from BDMPS medium-induced gluon spectrum, & extract parton $\langle \Delta p_T \rangle$ from R_{AA} data on h^{\pm} , D, J/ψ .
- He, Pang, Wang, PRL 2019
 - Use a general ansatz of jet $W_{AA}(x)$, and extract the flavor-averaged jet $\langle \Delta p_T \rangle$ and $W_{AA}(x)$ from single inclusive jet & γ -jet data.
- Zhang, Liao, GYQ, Wang, Xing, Sci. Bull. 2023
 - Extract gluon & charm quark $\langle \Delta p_T \rangle$ and $W_{AA}(x)$ for from $J/\psi R_{AA}$ data.
- This work (Xing, Cao, GYQ, PLB 2024) :
 - Perform a simultaneous analysis on **parton** $\langle \Delta p_T \rangle$ for all parton species (g, q, c, and b) from light & heavy flavor hadron R_{AA} data.

Details about the analysis

• The formula for hadron production in AA collisions:

$$\frac{1}{\langle N_{\rm coll} \rangle} \frac{d\sigma_{\rm AA \to hX}}{dp_{\rm T}^{h}} = \sum_{j} \int dp_{\rm T}^{j} dx dz \frac{d\hat{\sigma}_{{\rm p}'{\rm p}' \to jX}}{dp_{\rm T}^{j}} (p_{\rm T}^{j}) W_{\rm AA}(x) D_{j \to h}(z) \delta\left(p_{\rm T}^{h} - z(p_{\rm T}^{j} - x\langle \Delta p_{\rm T}^{j} \rangle)\right)$$

• Parameterize p_T -dependence of $\langle \Delta p_T \rangle$ for gluons (g), light quarks (q), charm quarks (c) and bottom quarks (b) as:

$$\left\langle \Delta p_{\mathrm{T}}^{j} \right\rangle = C_{j} \beta_{g} p_{\mathrm{T}}^{\gamma} \mathrm{log}(p_{\mathrm{T}})$$

- $C_g = 1$ and C_q , C_c , C_b represents the $\langle \Delta p_T \rangle$ ratio relative to gluon's.

• The parton energy loss distribution $W_{AA}(x)$ is taken as:

$$W_{\rm AA}(x) = \frac{\alpha^{\alpha} x^{\alpha - 1} e^{-\alpha x}}{\Gamma(\alpha)}$$

• The parameter set $\theta = (\beta_g, C_q, C_c, C_b, \gamma, \alpha)$ is to be calibrated.

Bayesian analysis

Posterior distributions of parameters

	with $\sigma_{\rm exp}$	with $0.5\sigma_{exp}$
eta_{g}	(1.646, 2.56)	(1.96, 2.39)
C_q	(0.129,0.65)	(0.226, 0.454)
C_c	(0.3, 0.567)	(0.344, 0.459)
C_b	(0.065, 0.277)	(0.124, 0.207)
γ	(0.137, 0.378)	(0.184, 0.295)
α	(5.287, 9.061)	(6.266, 8.401)

The energy loss parameters for jet-medium interaction can be well constrained by the Bayesian analysis.

Reducing experimental data error bars can improve the precision of the extracted parameters.

Prior and posterior R_{AA}

Our calibrated model calculation provides a simultaneous description on R_{AA} data of charged hadrons, D mesons and B-decayed J/ψ measured by CMS.

Flavor hierarchy of parton energy loss

Direct extraction of the flavor dependence of parton energy loss in QGP from data. Provides a stringent test of pQCD calculation of parton-medium interaction.

W. J. Xing, S. Cao, GYQ, PLB 2024

Summary

- Based on a NLO-pQCD calculation of parton production, a general ansatz for parton E-loss function & parton FF, we calculate R_{AA} for both heavy & light flavor hadrons over a wide p_T range.
- Using a Bayesian model-to-data analysis, we perform first simultaneous extraction of E-loss of gluons, light quarks, charm quarks & bottom quarks inside the QGP.
- The extracted parton E-loss inside the QGP exhibits a clear flavor hierarchy: $\langle \Delta E_g \rangle > \langle \Delta E_q \rangle \sim \langle \Delta E_c \rangle > \langle \Delta E_b \rangle$, consistent with the pQCD expectation.
- More data and more precise data can improve the precision for the extracted parton E-loss, providing better constraint on theoretical models.

The 9th International Symposium on Heavy Flavor Production in Hadron and Nuclear Collisions (HF-HNC 2024)

Guangzhou, China, December 6-11, 2024

Local Organizing Committee

G. Qin E. Wang H. Xing (Chair) S. Yang (co-Chair) Y. Zhang

International Advisory Committee

R. AverbeckE.G. FerreiroN. BrambillaP.B. GossiauxM. DjordjevicH. HuangX. DongY.J. LeeM. DurhamJ. Liao

J. Qiu M. Rosati L. Ruan E. Scomparin J. Stachel

R. Vogt X. Wang P. Zhuang B. Zou

https://indico.cern.ch/event/1429980/

Linear Boltzmann Transport (LBT) Model

• Boltzmann equation:

$$p_1 \cdot \partial f_1(x_1, p_1) = E_1 C [f_1]$$

$$\gamma_2 \int d^3 p_2 \int d^3 p_3 \int d^3 p_4$$

• Elastic collisions:

$$\Gamma_{12\to34} = \frac{\gamma_2}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4} \\ \times f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] \\ \times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) |\mathcal{M}_{12\to34}|^2$$

 $P_{el} = 1 - e^{-\Gamma_{el}\Delta t}$ Matrix elements taken from LO pQCD

• Inelastic collisions:

$$\langle N_g \rangle = \Gamma_g \Delta t = \Delta t \int dx dk_\perp^2 \frac{dN_g}{dx dk_\perp^2 dt}$$

 $P_{ine1} = 1 - e^{-\langle N_g \rangle}$ Medium-induced radiation spectra taken from HT: Guo, Wang PRL 2000; Zhang, Wang, Wang, PRL 2004; Zhang, Hou, GYQ, PRC 2019; Zhang, GYQ, Wang, PRD 2019.

• Elastic + Inelastic: $P_{tot} = 1 - e^{-\Gamma_{tot}\Delta t} = P_{el} + P_{inel} - P_{el}P_{inel}$

He, Luo, Wang, Zhu, PRC 2015; Cao, Luo, GYQ, Wang, PRC 2016, PLB 2018; etc.

Closure test

	θ_0	with $\sigma_{ m exp}$	with $0.5\sigma_{\rm exp}$
eta_{g}	2.35	(1.565, 2.614)	(1.862, 2.49)
C_q	0.55	(0.266, 0.928)	(0.344, 0.789)
C_c	0.5	(0.362, 0.725)	(0.398,0.61)
C_b	0.2	(0.063, 0.331)	(0.102, 0.278)
γ	0.15	(0.095, 0.303)	(0.125, 0.245)
α	7.0	(4.349, 9.146)	(5.01, 8.561)

Start with a pre-set point θ_0 to calculate R_{AA} of hadrons, which serves as the middle points of pseudo-data (the error bars are taken from the experiments data).

Confirm that the posterior distributions from Baysian analysis do agree with the pre-set value θ_0 .

Halving the error bars of the pseudo-data can improve the precision of the extracted parameters.