

The imprints of hydrodynamics in jet quenching

xoan.mayo.lopez@usc.es

25th September 2024, Nagasaki

Mainly based on 2304.03712, 2309.00683, 2406.14628

In collaboration with J. Barata, M. Kuzmin, A. Sadofyev and C. Salgado

Xoán Mayo López, IGFAE (USC)

- Modification of jet properties encodes information about the QGP characteristics and evolution

Jet tomography

• Jet tomography: Jets as differential probes of the spatio-temporal structure of the thermal matter in HIC

Do jets feel the transverse flow and anisotropies of the QGP?

Do jets feel the transverse flow and anisotropies of the QGP?

Florian Lindenbauer Mon Andrey Sadofyev Mon Sergio Barrera Mon

Joseph Bahder Dana Avramescu

Tue Tue

Tan Luo **Rainer Fries** Carlos Salgado João Silva Carlos Lamas

Wed Wed Wed Wed Wed

Focus on leading perturbative processes: Two processes that modify jets.

Broadening

Theoretical formulation of jet quenching requires several assumptions to make it tractable. Some of them are

- Ekional expansion; only sub-eikonal length enhanced terms are kept
- Medium is modeled by a background field
- In the simplest scenario the medium is static and homogeneous

Medium induced gluon radiation

See e.g. Casalderrey-Solana, Salgado 2007

The medium is modeled by a field created by a classical current of sources

The stochastic field can be written as

$$gA^{a\mu}(q) = \sum_{i} u_i^{\mu} e^{-iq \cdot x_i} t_i^a v_i(q) (2\pi) \delta(q_0 - q_0)$$

Background color field

See e.g.

Sadofyev, Sievert, Vitev PRD 2021 Andres, Dominguez, Sadofyev, Salgado PRD 2022 Kuzmin, XML, Reiten, Sadofyev PRD 2024 Kuzmin, XML 2024

Heavy sources

$$u_{\mu} = (1, \boldsymbol{u}, u_{z})_{\mu}$$

$$v_i(q) = \frac{g^2}{q^2 - \mu^2 + i\epsilon}$$

controls the jet-medium interaction

controls the inhomogeneity

velocity of the sources

 $\boldsymbol{q}\cdot\boldsymbol{u}-q_z u_z)$

4

Stochastic field \longrightarrow need to specify the average over its configurations \longrightarrow Gaussian statistics

 $(A^{a}(q)A^{b}(\bar{q}))$

Medium average

Colour neutrality

$$\rangle \sim \langle t_i^a t_j^b \rangle = \mathcal{C} \, \delta_{ij} \, \delta^{ab}$$

Hydrodynamic variables, $g(\boldsymbol{x}, z)$, encode the matter structure:

Transversely homogeneous matter :

 $g(\boldsymbol{x}, z) \simeq g(z)$

Transversely inhomogeneous matter :

$$g(\boldsymbol{x}, z) \simeq g(z) + \boldsymbol{\nabla}_{\alpha} g(z) \boldsymbol{x}_{\alpha}$$

Gradients in the medium average

 $g(oldsymbol{x},z)\equiv
ho(oldsymbol{x},z)$ $\mu^2(oldsymbol{x},z)$ $oldsymbol{u}(oldsymbol{x},z)$ $u_z(oldsymbol{x},z)$

See e.g.

Sadofyev, Sievert, Vitev PRD 2021 Barata, Sadofyev, Salgado PRD 2022 Barata, XML, Sadofyev, Salgado PRD 2023 Kuzmin, XML, Reiten, Sadofyev PRD 2024

$$\int_{\mathbf{r}} g(z) e^{-i(\mathbf{q} \pm \bar{\mathbf{q}}) \cdot \mathbf{x}} = g(z) (2\pi)^2 \,\delta^{(2)}(\mathbf{q} \pm \bar{\mathbf{q}})$$

$$\int_{\mathbf{x}} \nabla_{\alpha} g(z) \, \mathbf{x}_{\alpha} \, e^{-i(\mathbf{q} \pm \bar{\mathbf{q}}) \cdot \mathbf{x}} = i \nabla_{\alpha} g(z) \, (2\pi)^2 \, \frac{\partial}{\partial (\mathbf{q} \pm \bar{\mathbf{q}})_{\alpha}} \, \delta^{(2)}(\mathbf{q} \pm \bar{\mathbf{q}})_{\alpha}$$

6

Configuration 1

Anisotropic and static matter in the dense regime

The medium-induced gluon spectrum in the dense regime

Controls the in-medium energy loss

Medium-induced radiation

 $\frac{d\omega}{dL} \propto \frac{\partial}{\partial L} \int d\omega \, d^2 \mathbf{k} \, \omega \frac{dI}{d\omega \, d^2 \mathbf{k}}$

7

The spectrum is anisotropic with a modification subleading in energy

Assuming harmonic oscillator and constant density profile

Medium-induced radiation

The spectrum is anisotropic with a modification subleading in energy

Assuming harmonic oscillator and constant density profile

Medium-induced radiation

Configuration 2

Homogeneous and flowing matter in the dilute regime

þ þ <u>فووووووو</u> ا 60000 S S S

The spectrum is anisotropic with a modification subleading in energy Assuming GW potential and smooth density profile in the longitudinal direction

 $\omega = 5 \,\mathrm{GeV}$

Medium-induced radiation

* Fondos Europeos

The spectrum is anisotropic with a modification subleading in energy Assuming GW potential and smooth density profile in the longitudinal direction

 $\omega = 5 \,\mathrm{GeV}$

Medium-induced radiation

9

See e.g.

* Fondos Europeos

Configuration 3

Anisotropic and flowing matter in the dilute regime

Novel multiplicative correction to the leading order in energy affecting:

- dIthe medium induced radiation $\overline{d\omega \, d^2}$
- the broadening \hat{q} (

Rough estimate of the correction

hydro works for not too small droplets LT > 1 $\left|\frac{\mathbf{\nabla}T}{T^2}\right| < 1$ gradient expansion U ~ 1 relativistic flow $1 - u_z$

$$\overline{\mathbf{k}} \propto \int_0^L dz \int d^2 \boldsymbol{q} \left[1 - 3 z T \, \frac{\boldsymbol{\nabla} T \cdot \boldsymbol{u}}{1 - 0} \right] \left(1 - \cos\left(\frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2\omega}\right) \right)$$

$$\propto \left[1 - \frac{3}{2} LT \, \frac{\frac{\boldsymbol{\nabla}T}{T^2} \cdot \boldsymbol{u}}{1 - \boldsymbol{u}_z}\right] \hat{q}_{\rm iso}$$

$$\longrightarrow \qquad \left| LT \, \frac{\frac{\mathbf{v}T}{T^2} \cdot \mathbf{u}}{1 - u_z} \right| \sim 1$$

Not energy suppressed !!

The spectrum si isotropic but depends on the relative direction between the transverse gradients and the flow Assuming GW potential and smooth density profile in the longitudinal direction

Multiplicative modification of the radiation spectrum

Medium-induced radiation

Modification of the induced energy loss

11

* Fondos Europeos

To take home

- Jets do feel the transverse flow and anisotropy, and get bended and distorted
- The transverse flow and anisotropy do affect the medium-induced radiation, modifying the jet substructure
- The interplay between flow and anisotropies modify the amount of quenching of a jet already at LO
- These effects can be probed in experiment, leading towards actual jet tomography

Thanks

The broadening gets an anisotropic contribution subleading in energy for both configurations

Averages of odd powers of \mathbf{k}_{\perp} are non zero and along:

the hydrodynamic gradients **C1**

C2 the flow of the matter

Averages of even powers of \mathbf{k}_{\perp} are not modified

Directional broadening

Both the leading and subleading orders in energy get modified

- Averages of odd powers of \mathbf{k}_{\perp} behave exactly as in C1 and C2

- Averages of even powers of \mathbf{k}_{\perp} get modified by at leading order in energy

$$\hat{q} \propto \left[1 - L \frac{\boldsymbol{\nabla} T \cdot \boldsymbol{u}}{1 - u_z} \right] \hat{q}_{\text{iso}}$$

Directional broadening

Simple physical picture

