

Measurement of high p_T **direct photon and π^os in small collision systems at PHENIX**

Daniel Firak (for the PHENIX collaboration) - Stony Brook University

- **Outline:** Motivation: $R_{AB}(p_T)$
	- Selection bias, Energy conservation in small systems
		- Glauber Model in Small systems
	- Direct Photons, Bjorken-x
	- Nuclear modification factor in d+Au (PHENIX: arXiv:2303.12899)

Nuclear modification factor in Au+Au

$$
R_{AB}(p_T) = \frac{Yield_{AB}}{\langle \mathbf{N}_{coll} \rangle \cdot Yield_{pp}}
$$

• For neutral pions (hadrons), $R_{AB}^{\pi^0}$ shows suppression in large systems

• For photons, R_{AB}^{γ} is consistent with 1

Nuclear modification factor in small systems

• Suppression for the central events could be explained with QGP formation. Enhancement cannot be explained (easily) from physical arguments.

Is the Glauber Model good both in small WPH*ENIX and large systems?

$$
\frac{dN_{ch}}{d\eta} \Rightarrow N_{coll} \xrightarrow[Model/Theory]{}
$$

$$
N_{par} \xrightarrow[Theory]{}
$$
 b

• Multiplicity window = centrality class

• Measurable

•
$$
N_{coll}^{GL} \propto \left(\frac{dN_{ch}}{d\eta}\right)^a
$$
 : Not directly measurable!

• Obtained through Glauber model

There IS bias in small systems!

Centrality is determined by event activity in the BBC, on the Au going direction (PHENIX)

There IS bias in small systems!

Centrality is determined by event activity in the BBC, on the Au going direction (PHENIX)

"Correlations between hard probes and bulk dynamics in small systems" Sangyong Jeon – in ~30 minutes!

Daniel Firak 6

Direct photons to the rescue!

• Unlike color charged matter, direct photons are unaffected by QGP. • γ^{dir} can be used as a less biased direct measure of N_{Coll}

Direct measurement of the

$$
R_{AB}^{\gamma^{dir}}(p_T) = \frac{Y_{AB}^{\gamma^{dir}}(p_T)}{N_{coll} \cdot Y_{pp}^{\gamma^{dir}}(p_T)} \approx 1
$$

• The ratio of direct photon yields can be used as a measure of N_{coll} :

 $Y^{\gamma dir}_{AB}$

 $Y_{pp}^{\gamma\,dir}$

 $Y^{\pi^0}_{AB}(p_T$

 $N_{Coll}^{EXP} =$

 $R^{\pi^\vee}_{AB,exp}$

 $a_{AB,exp}^{\pi^0}(p_T) =$

The Bjorken-x bias

• To first order, the same kinematic bias would affect both $p + p$ and $d + Au$ 222

$$
R_{dAu,exp}^{\pi^0}(p_T) = \frac{\left(\gamma^{dir}/\pi^0\right)^{pp}}{(\gamma^{dir}/\pi^0)^{dAu}}
$$

The Bjorken -x bias

- High p_T γ^{dir} and π^0 (7.5 < p_T < 18 GeV/c)
	- γ^{dir} consistent with 2003 min bias data (PHENIX: PRC87(2013)54907)
	- π^0 consistent with 2008 data (PHENIX:PRC(2022)64902)

•
$$
N_{Coll}^{EXP}(p_T) = \frac{Y_{dAu}^{\gamma \text{dir}}(p_T)}{Y_{pp}^{\gamma \text{dir}}(p_T)}
$$

•
$$
R_{dAu, EXP}^{\pi^0}(p_T) = \frac{(\gamma^{dir}/\pi^0)^{pp}}{(\gamma^{dir}/\pi^0)^{dAu}}
$$

- No obvious p_T dependence.
	- *pp* and d Au (γ^{dir}/π^0) behave similarly

Daniel Firak 10

Comparison with Glauber

 $N_{Coll}^{EXP} =$ $Y^{\gamma dir}_{AB}$ $p_T^{}$ $Y_{pp}^{\gamma\,dir}$ $p_T^{}$

- Good agreement between N_{Coll}^{EXP} and N_{Coll}^{GL} is seen in central collisions
- 15% deviation is seen in peripheral collisions

$$
R_{AB,exp}^{\pi^0}(p_T) = \frac{Y_{AB}^{\pi^0}(p_T)}{N_{Coll}^{EXP} \cdot Y_{pp}^{\pi^0}(p_T)} \Rightarrow \frac{(\gamma^{dir}/\pi^0)^{pp}}{(\gamma^{dir}/\pi^0)^{AB}}
$$

• Minimum bias (0-100%):

- No significant p_T dependence
- Average:

$$
\left\langle R_{dAu,exp}^{\pi^0} \right\rangle = 0.92 \pm 0.02 \pm 0.15
$$

- Consistent with unity
- Consistent with 5% enhancement from CNM effects*

*Arleo et al.: CNM effects largely cancel in the γ^{dir}/π^0 in this p_T range

- Peripheral collisions are consistent with inclusive (0- 100%)
- No peripheral enhancement

TIPH ENIX

- $\gamma^{dir}/\pi^{0})^{pp}$ $Y^{\pi^0}_{AB}(p_T$ $R^{\pi^0}_{AB,exp}(p_T) =$ ⇒ $N_{Coll}^{EXP} \cdot Y_{pp}^{\pi^0}(p_T)$ $\gamma^{dir}/\pi^{0})^{AB}$ ΚÏ **PHENIX** $\mathbb{E}^{\frac{1}{2}}_{0.8}$ >20% 0.6 $0 - 5%$ 0.4 $\langle R_{dAu,EXP}^{\pi^0}$ $0.75 \pm 0.03 \pm 0.13$ 0.2 8 14 16 10 GeV/c] p_{t} PHENIX: arXiv:2303.12899
- Central collisions (0-5%) are consistent with **>20% suppression**
	- No enhancement
	- Clear suppression!

Summary

Backup:

Daniel Firak 17

PRC

 $\overline{\overline{C}}$

The Bjorken-x bias

- Even so, the final answer to this puzzle comes from the (upcoming) systematic study of small systems
- Final State $3He > d > p$
- p Size fluctuation $p > d > 3$ He

Energy conservation in small systems

"Correlations between hard probes and bulk dynamics in small systems" Sangyong Jeon – in ~30 minutes!

Data analysis

The 2016 dataset for d+Au at 200 GeV is used

- π^0 reconstructed from γ clusters on the EMCal
- Triggered on high p_T range. Analysis done for γ and π^0 on $p_T >$ 7.5 GeV

Analysis chain:

- Reconstructed Raw π^0 from γ showers $(\pi^0 \to \gamma \gamma)$
- Raw spectra is unfolded to obtain Invariant π^0
	- $\frac{\eta}{\pi^0}$ ratio used to obtain invariant η yield
- Model π^0 and η decay in PHENIX to obtain γ^{decay}
- Subtraction of decay from inclusive raw γ to obtain Raw γ^{dir}
- Unfolding Raw γ^{dir} to obtain Invariant γ^{dir}

Systematic uncertainties

- \sim 12% on π^0 and γ^{dir}
- 6% on γ^{dir}/π^0
- Uncertainties on γ^{dir}/π^0 are common to all centralities

Bias in Centrality determination

• Since the event activity is measured in the forward region of the detector, a hard event (think jets) can deplete the forward activity, and would have a high pT event on the central detectors

• This can drive central events to appear as peripheral, explaining a source of "peripheral enhancement" at high pT

γ^{dir} π^0 **: An observable of centrality bias**

are not affected – centrality dependence in π^0 is genuine physics

 \triangleright photons - bias on centrality letermination affecting π^0 s determination affecting $\overline{}$ Centrality Independent: affects direct determination affecting π^0 s

Event activity to centrality

• Centrality is determined by event activity in the BBC, on the Au going direction

Event activity to centrality

• Centrality is determined by event activity in the BBC, on the Au going direction

Nuclear modification factor in d+Au

- For high p_T π^0 s in small systems, large centrality dependence is observed:
	- Suppression for central events

• Suppression for the central events could be explained with QGP formation. Enhancement cannot be trivially explained from physical arguments.

$$
R_{AB,exp}^{\pi^0}(p_T) = \frac{(\gamma^{dir}/\pi^0)^{pp}}{(\gamma^{dir}/\pi^0)^{AB}}
$$

Y π^0 : same normalization peak extraction energy scale

In pp – pp cross section

Double: Hadron contamination

Assumption: $\overline{R_{AA}^{\gamma}}^{dir}$ \equiv 1

Glauber Bias

Pp cross section

Centrality bias

Model dependent

$$
R_{AB,GL}^{\pi^0}(p_T) = \frac{Y_{AB}^{\pi^0}}{N_{Coll}^{GL} \cdot Y_{pp}^{\pi^0}}
$$

