Jet Quenching and Medium response using γ + jet events

Dominik Derendarz Institute of Nuclear Physics Polish Academy of Sciences on behalf of the ATLAS collaboration 25/09/2024

Phys. Lett. B 846 (2023) 138154

Probing flavour

ATLAS detector

(objects like jets and γ mosty reconstructed in calorimeters but other components obviously used as well)

Jets: **UE subtracted towers** built from EM + HAD calorimeters

Photons: **UE subtracted cels** of EM calorimeter

 Data sets
 pp 260 pb⁻¹ (2017)

 Pb+Pb 1.7 nb⁻¹ (2018)

 $\Delta \phi (\gamma, \text{jet}) > 7\pi/8$

Analysis steps

Construct raw distributions

Subtract mixed event (Subtract combinatoric contribution by correlating signal photons to jets in minimum bias events; Pb+Pb only)

Purity correction (Subtract jets correlated with non-signal γ)

Unfold for detector effects (2D unfolding of jet and γp_T with efficiency and fake corrections)

Analysis steps

Construct raw distributions

Subtract mixed event (Subtract combinatoric contribution by correlating signal photons to jets in *minimum bias events; Pb+Pb only)*

Purity correction (Subtract jets correlated with non-signal γ)

Unfold for detector effects (2D unfolding of jet and γp_T with efficiency and fake corrections)

Uncertainties

Jets (3-8%) (Energy scale & resolution; combinatoric background jet subtraction)

Photons (4-15%) (Energy scale & resolution; data/MC shower shape difference; purity; isolation condition)

> Unfolding (1-5%) (Sensitivity to the prior, MC statistics)

Global uncertainties (2-4%) (T_{AA} and luminosity)

Phys. Lett. B 846 (2023) 138154

2018 Pb+Pb 1.7 nb⁻¹, 2017 *pp* 260 pb⁻¹, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ <u>) jet</u> [<u>GeV</u>] ATLAS anti- $k_{T} R = 0.4$ jets $|\eta^{\rm jet}| < 2.8$ $d^2 \sigma^{pp}$ $\int d\eta^j$ $p_{\tau}^{\gamma} > 50 \text{ GeV}, |\eta^{\gamma}| < 2.37^{-1}$ $\Delta \phi(\gamma, \text{jet}) > 7\pi/8$ d p 0 $\det d\eta^{jet}$ d²N^{PbPb} ğ $< T_{AA}>$ 10 0-10% γ-jet 0-30% γ-jet (x10) $30-80\% \gamma$ -jet (x10²) *pp* γ-jet (x10³) 10^{-6} *pp* inc. jet (x10) [PLB 790 (2019) 108] 10^{-7} $\sigma^{pp}_{\mathsf{inclusive jet}}$ 0.0015 0.001 d : ↓ 0.0005 ⊢ β 100 150 200 250 300 50 Jet $p_{_{T}}$ [GeV]

γ -tagged jet spectra and R_{AA}

- $< T_{AA} >$ normalised γ -tagged jet yields in different centrality bins in Pb+Pb and differential cross section in pp collisions
- $\sigma(\gamma$ -jet) in pp collisions has a less steep spectrum than *σ(inclusive-jet)*
 - Must be considered in comparisons between two samples

γ -tagged jet spectra and R_{AA}

Phys. Lett. B 846 (2023) 138154

• More suppression in central Pb+Pb as expected due to larger quenching effect

γ -tagged jet spectra and R_{AA}

Phys. Lett. B 846 (2023) 138154

Comparison of γ -tagged jets with inclusive jets in 0-10% • Up to p_T of 200 GeV γ -tagged jets less suppressed

 Energy loss expressed in ∆p_T or fractional energy loss (S_{loss}) greatly reduce sensitivity to the spectral shape

 Energy loss expressed in ∆p_T or fractional energy loss (S_{loss}) greatly reduce sensitivity to the spectral shape

energy loss (S_{loss}) greatly reduce sensitivity to the spectral shape

less suppressed

• Energy loss expressed in Δp_T or fractional energy loss (S_{loss}) greatly reduce sensitivity to the spectral shape

Estimated the impact of Isospin and nPDF effects

Comparison with Theory

- γ -tagged jet R_{AA} in data is generally larger than the predictions
- Inclusive jet R_{AA} generally well described by calculations

ally larger than the predictions escribed by calculations

Multi-jet final state in γ -tagged events

 $X_{J\gamma} = \rho_T^{jet} / \rho_T^{\gamma}$

Multi-jet final state in γ -tagged events

Data sets

pp 260 pb⁻¹ (2017) **Pb+Pb** 1.7 nb⁻¹ (2018)

Objects selection

Jets: Photons: At least two AntiKt **R=0.2** $90 < p_T \gamma < 180 \text{ GeV}$ $p_T^{jet} > 30 \text{ GeV}$ $|\eta| < 1.37 \parallel 1.52 < |\eta| < 2.37$ $|\eta| < 2.8$ Shower shape $\Delta \phi (\gamma, \text{jet}) > \pi/2$ Isolation $\Delta R_{JJ} > 0.4$

 $\Delta \phi (\gamma, JJ) > 7\pi/8$

Analysis steps

Construct raw distributions

Subtract Mixed Event (Modified procedure to take into account *multi-jet*)

Purity correction

Unfold for detector effects (Performed in three dimensions: observable) of interest, $p_T \gamma$ and p_T^{jet2})

γ muliti-jet balance (x_{JJ γ})

- Shift of the peak position in Pb+Pb with respect to the pp
- No more "shoulder" structure at low $x_{JJ\gamma}$ (as seen in $x_{J\gamma}$)

 $X_{JJ\gamma}$

Difference between two jets p_T w.r.t γp_T (A_{JJ γ})

Angle between two jets (ΔR_{JJ})

- Potentially sensitive to medium resolution of multiple colour charges
- Hint of stronger suppression of jets with larger ΔR_{JJ}

- γ -tagged jets have been measured in PbPb and pp and have been compared with inclusive jet
- Strong evidence of larger energy loss of gluon than quark jets

• First analysis of γ -tagged multi-jet system in Pb+Pb (preliminary) with new observables

1.2