

Measurements of jet quenching using hadron-jet observables at ALICE

Daniel Jones 24th September 2024 University of Liverpool Hard Probes 2024 On behalf of ALICE

HP2024 NAGASAKI

Motivation

- We want to explore jet quenching across the full LHC phase space
 - Specifically low- p_{T} and large R probe medium response effects
- Uncorrelated background is huge in these regions
 - We cannot discriminate between signal and uncorrelated background on a per event basis
- Apply statistical, data driven-approach for background yield suppression: semi-inclusive approach
 - Cleanly select events based on a high-p_T trigger ALICE Run 1: JHEP 09 (2015) 170 STAR: Phys.Rev.C 96 (2017) 2, 024905
 - Count recoil jets

See Aimeric's talk (24/09, 15:00): statistical approach for inclusive jets!

Semi-inclusive hadron-jet measurements

- Measure the yield of charged particle jets recoiling from a high- p_{T} hadron as a function of:
 - The jet transverse momentum (*p*_{T,jet}) Energy loss
 - The trigger-jet opening angle ($\Delta \phi$) Azimuthal broadening
- In pp:
 - Test pQCD predictions
 - Investigate the limits of QGP formation
 - Reference for Pb-Pb
- This talk:
 - Run 2, 13 TeV pp High Multiplicity (HM)
 - Run 3, 13.6 TeV pp (Preliminary)

$\Delta_{\mbox{recoil}}$ - approach to uncorrelated background yield subtraction

yields: signal and reference

$$\Delta_{\text{recoil}}(p_{\text{T,jet}}, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N_{\text{jet}}}{\mathrm{d} p_{\text{T,jet}} \mathrm{d} \Delta \varphi}$$

- Advantages:
 - Data-driven subtraction of uncorrelated background yield
 - Perturbatively calculable

 c_{ref} : normalisation factor - derived from data

• Take the difference between two semi inclusive, trigger normalised jet

What is the limit of QGP formation?

- systems?
 - p-Pb?

Look for the key signatures of QGP formation:

- Strangeness enhancement
- Collective flow (Biao Zhang 23/09, Yiping Wang 24/09)
- Jet quenching
 - Suppression of back to back correlations
 - Enhancement at large acoplanarity

We know a QGP forms in heavy-ion collisions. What about small collision

High multiplicity pp? QGP like effects seen in HM small systems

Event selection

• Event selections:

- **MB**: in-time coincidence of VOA and V0C
- HM: $VOM/\langle VOM \rangle > 5$

VOM = VOA + VOC

 $\langle VOM \rangle =$ Mean MB multiplicity

Probability density

Daniel Jones (University of Liverpool)

JHEP 05 (2024) 229

ALI-PUB-574872

Raw distributions

JHEP 05 (2024) 229

- Δ_{recoil} corrects uncorrelated background yield
- **Distribution then corrected for** p_{T} smearing due to detector effects and residual background (unfolding)

7

Fully corrected HM/MB $\Delta_{\rm recoil}$ ratio

- Possible azimuthal broadening in HM w.r.t MB
 - Suppression of back to back correlations
 - Jet quenching like signal?
- Results reproduced by PYTHIA

PYTHIA does **NOT** model Jet Quenching!

JHEP 05 (2024) 229

Event selections - bias

Bias towards multi-jet final states

- Seen in both data and PYTHIA
- Explains the jet quenching like effects
- Bias is generic must be considered in all Jet Quenching searches in small systems

JHEP 05 (2024) 229

Run 3: Whats new?

- Run 3 of the LHC began in July 2022:
 - Increased collision energy 13.6 TeV
 - Improved luminosity already surpassed Run 2 luminosity in first few weeks in Run 3!
- First Run 3 jet based preliminary results shown at Hard Probes 2024
- We analyse 2022 pp data:
 - 49.2B events (1.04B in 5.02 TeV Run 2)!

Fully corrected semi-inclusive hadron+jet yield

\rightarrow PYTHIA describes the data well within uncertainties

Daniel Jones (University of Liverpool)

• Measure $\Delta_{recoil}(p_T)$ from 7 GeV/c to 110 GeV/c for R = 0.2 and R = 0.4

Fully corrected yield ratio, (R = 0.2)/(R = 0.4)

Fully corrected yield ratio, (R = 0.2)/(R = 0.4)Robust jet shape observable - precise theory and experiment PQCD: JHEP 04 (2015) 039

Phys.Rev.C 110 (2024) 1, 014906

Daniel Jones (University of Liverpool)

Fully corrected yield ratio, (R = 0.2)/(R = 0.4)**Robust jet shape observable - precise theory and experiment** pQCD: JHEP 04 (2015) 039

ALI-PREL-581870

Daniel Jones (University of Liverpool)

dependence at low- p_T ?

Phys.Rev.C 110 (2024) 1, 014906

Fully corrected yield ratio, (R = 0.2)/(R = 0.4)**Robust jet shape observable - precise theory and experiment** pQCD: JHEP 04 (2015) 039

ALI-PREL-581870

- Good agreement with Run 2 result
 - Possible collision energy dependence at low- p_{T} ?
- Agreement between inclusive jets and semi-inclusive at high *p*_T

Phys.Rev.C 110 (2024) 1, 014906

Fully corrected yield ratio, (R = 0.2)/(R = 0.4)Robust jet shape observable - precise theory and experiment PQCD: JHEP 04 (2015) 039

Phys.Rev.C 110 (2024) 1, 014906

- Good agreement with Run 2 result Possible collision energy dependence at low- p_T ? **Agreement between inclusive jets** and semi-inclusive at high p_{T} • Enhancement in R = 0.2 recoil jet yield at low p_{T} Bias towards NLO effects when $p_{\text{T,iet}} < p_{\text{T,trig}}$?
 - Jet splitting?

Looking ahead...

- Investigate the origin of the low $p_T R$ -ratio shape
- Introduce an observable to look at recoil jet substructure: ΔR_{axis}
- Begin Pb-Pb analysis!
 - What is the origin of the acoplanarity broadening?

Daniel Jones (University of Liverpool)

• Utilise the statistical approach - the first application to jet substructure

JHEP 07 (2023) 201

Summary and outlook

- Search for QGP signatures in high multiplicity pp collisions
 - Jet quenching like effects masked by generic event selection bias
- First look at recoil jet spectra in Run 3
 - Results in good agreement with PYTHIA and Run 2
 - Probe of pQCD with the additional scale from hadron trigger
- Next steps: investigate recoil jet substructure including in Pb-Pb

JHEP 05 (2024) 229

• Raw spectrum calibrations:

 Δ_{recoil}

- The raw distributions are unfolded to remove detector effects
- Closure test for validation: Take embedded PYTHIA, unfold and compare to truth-level
 - Small non closure (7-10%) in Run 3 → added as a systematic

$${}_{1}(p_{\mathrm{T,jet}},\Delta\varphi) = \frac{1}{N_{\mathrm{trig}}} \frac{\mathrm{d}^{2}N_{\mathrm{jet}}}{\mathrm{d}p_{\mathrm{T,jet}}\mathrm{d}\Delta\varphi} \bigg|_{p_{\mathrm{T}}^{\mathrm{trig}}\in\mathrm{TT}_{\mathrm{sig}}} - c_{\mathrm{Ref}} \times \frac{1}{N_{\mathrm{trig}}} \frac{\mathrm{d}^{2}N_{\mathrm{jet}}}{\mathrm{d}p_{\mathrm{T,jet}}\mathrm{d}\Delta\varphi} \bigg|_{p_{\mathrm{T}}^{\mathrm{trig}}\in\mathrm{TT}_{\mathrm{ref}}}$$

Systematics

- Run 2:
 - Tracking efficiency
 - Unfolding procedure
 - Background fluctuations
 - c_{ref} calculation (low- p_T)
- Run 3:
 - Tracking efficiency
 - Non-closure
 - c_{ref} calculation (low- p_T)

HM/MB recoil jet yield as a function of p_T

Suppression of HM recoil jet yield across all p_T

η_{jet} spectra in MB and HM events - data and PYTHIA

ALI-PUB-574887

Suppression of jet yield in the central barrel

Fully corrected $\Delta_{recoil}(p_T)$

• Measure $\Delta_{recoil}(p_T)$ from 7 GeV/c to 110 GeV/c for R = 0.2 and R = 0.4

