Energy-energy correlators of inclusive jets in heavy-ion collisions

Yayun He For the JETSCAPE Collaboration

Sep. 22-27, 2024

Outline

Introduction

The JETSCAPE framework

Results: EECs of inclusive jets

Summary and outlook

Jet energy-energy correlator

 $d\Sigma^{I}$

 \overline{dR}

$$\sum_{k=1}^{n} \sum_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} \frac{p_{T,i}^{n} p_{T,j}^{n}}{p_{T,jet}^{2n}} \delta(R'_{L} - R_{L})$$

$$\int \int p_{Tj} p_{Ti} R_{L} = \sqrt{(\eta_{i} - \eta_{j})^{2} + (\phi_{i} - \phi_{j})^{2}}$$

- ✓ pQCD calculable
- ✓ Background contribution suppressed ($n \ge 1$)

Jet energy-energy correlator

Perturbative & NP regions in pp

ALICE, arXiv:2409.12687

• Nuclear effects in AA (γ -triggered jet)

Andres, Dominguez, Elayavalli, Holguin, Marquet, & Moult, PRL 130, 262301 (2023).

Yang, He, Moult & Wang, PRL 132, 011901 (2024)

Yayun He (SCUT)

• Nuclear effects in AA (γ -triggered jet)

Color decoherent

Andres, Dominguez, Elayavalli, Holguin, Marquet, & Moult, PRL 130, 262301 (2023).

Yang, He, Moult & Wang, PRL 132, 011901 (2024)

Yayun He (SCUT)

The JETSCAPE Framework

- Modular: implement your favorate modules
- Multi-stage: jet evolution is controlled by the virtuality of the parton
- ✓ Output: ASCII, Gzip, HepMC format

The JETSCAPE Framework

- Modular: implement your favorate modules
- Multi-stage: jet evolution is controlled by the virtuality of the parton
- ✓ Output: ASCII, Gzip, HepMC format

See the talks for more details:
Y. Tachibana, Mon. 5:50 pm
C. Sirimanna, Wed. 9:40 am

The JETSCAPE Framework

✓ Multi-stage: jet evolution is controlled by the virtuality of the parton

EECs of Inclusive Jets

ALICE
$$\frac{d\Sigma^{n}}{dR_{L}} = \Sigma_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} \frac{p^{n}_{T,i} p^{n}_{T,j}}{p^{2n}_{T,jet}} \delta(R'_{L} - R_{L})$$

p+p

p+p, scaling, $\propto \Lambda_{QCD}$

Yayun He (SCUT)

EECs of Inclusive Jets

ALICE
$$\frac{d\Sigma^{n}}{dR_{L}} = \Sigma_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} \frac{p_{T,i}^{n} p_{T,j}^{n}}{p_{T,jet}^{2n}} \delta(R'_{L} - R_{L})$$

Nuclear effect, n=1

Yayun He (SCUT)

Nuclear effects in AA

γ -triggered jet

Inclusive jet

Yayun He (SCUT)

Nuclear effects in AA

MATTER+LBT

pp, jet p_T shifting

Nuclear effects in AA

partonic w. showering outside of the medium

partonic w/o showering outside of the medium

Nuclear effects in AA

charged w. showering outside of the medium

charged w/o showering outside of the medium

Yayun He (SCUT)

EECs of Inclusive Jets

CMS

$$\frac{d\Sigma^n}{dR_L} = \sum_{i,j} \int dR'_L \frac{d\sigma}{dR'_L} p^n_{T,i} p^n_{T,j} \delta(R'_L - R_L) \text{ (normalized to unity)}$$

p+p, 1 GeV cut, n=1

scaling, $\propto \Lambda_{QCD}$

J. Viinikainen, MITP, CMS-PAS-HIN-23-004

EECs of Inclusive Jets

$$\frac{d\Sigma^{n}}{dR_{L}} = \Sigma_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} p^{n}_{T,i} p^{n}_{T,j} \delta(R'_{L} - R_{L}) \text{ (normalized to unity)}$$
Pb+Pb, 1 GeV cut, n=1 Nuclear effect

2.0 $\sqrt{s} = 5.02 \text{ TeV}$ $\sqrt{s} = 5.02 \text{ TeV}$ JS 0-10 % + CMS 0-10 % 10 anti- k_T jet $120 < p_{T}^{\text{jet}} < 140 \text{ GeV/c}$ anti- k_T jet R = 0.41.5 R = 0.4 $\frac{1}{N_{\rm EEC}}\frac{dN_{\rm EEC}}{dR_L}$ n = 1n = 1JS Pb+Pb AA/pp + CMS Pb+Pb 1.0 $120 < p_T^{jet} < 140 \text{ GeV/c}$ p_T^{track} $p_T^{\text{track}} > 1 \text{ GeV/c}$ $|\eta^{\text{jet}}|$ η^{jet_1} < 1.6 < 1.6 >1 GeV/c0.5 10^{-2} 10^{-1} 10^{-2} 10^{-1} R_L R_L

Medium Response ?

CMS

 $\frac{d\Sigma^{n}}{dR_{L}} = \sum_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} p^{n}_{T,i} p^{n}_{T,j} \delta(R'_{L} - R_{L}) \text{ (normalized to unity)}$

Nuclear effect, 1 GeV cut, n=1

Nuclear effect, 2 GeV cut, n=1

Medium Response ?

CMS

 $\frac{d\Sigma^{n}}{dR_{L}} = \sum_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} p^{n}_{T,i} p^{n}_{T,j} \delta(R'_{L} - R_{L}) \text{ (normalized to unity)}$

Nuclear effect, 1 GeV cut, n=1

Nuclear effect, 1 GeV cut, n=2

Medium Response ?

CMS

 $\frac{d\Sigma^{n}}{dR_{L}} = \sum_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} p^{n}_{T,i} p^{n}_{T,j} \delta(R'_{L} - R_{L}) \text{ (normalized to unity)}$

Nuclear effect, 2 GeV cut, n=1

Nuclear effect, 2 GeV cut, n=2

Summary

- ✓ Jets are powerful probes to reveal QGP properties.
- EEC distributions are dominated by selection bias and hadronization in the small angle region, and could be enhanced by medium response in the large angle region.

Outlook

- Further Investigating the effects of hadronization and medium response on EECs.
- Three-point energy correlators.

JETSCAPE @ HP2024

- Peter Jacobs, Multi-Observable Analysis of Jet Quenching Using Bayesian Inference (Parallel 4: high pt in small systems, Monday 3:40 pm)
- Yasuki Tachibana, Extraction of jet-medium interaction details through jet substructure for inclusive and gamma-tagged jets (Parallel 5: jet substructure, Monday 5:50 pm)
- Hendrik Roch, Effects of hadronic reinteraction on jet fragmentation from small to large systems (Parallel 5: jet substructure, Monday 6:10 pm)
- Yayun He, Energy-energy correlators of inclusive jets in heavy-ion collisions (Parallel 9: jet EEC, Tuesday 9:40 am)
- Abhijit Majumder, Correlations between hard probes and bulk dynamics in small systems (Parallel 21: jets in small systems, Tuesday 4:15 pm)
- Chathuranga Sirimanna, Interplay of prompt and non-prompt photons in photon-triggered jet observables (Parallel 28: hard EM, Wednesday 9:40 am)
- Rainer Fries, X-SCAPE as a universal Event Generator for e+p, e+e- and pp collisions (Poster, Tuesday 4:35 pm)

↗

Thanks for your attention!

Centrality Dependence

CMS

 $\frac{d\Sigma^{n}}{dR_{L}} = \sum_{i,j} \int dR'_{L} \frac{d\sigma}{dR'_{L}} p^{n}_{T,i} p^{n}_{T,j} \delta(R'_{L} - R_{L}) \text{ (normalized to unity)}$ 10-30%, 1 GeV cut, n=1 **30-50%**, 1 GeV cut, n=1 2.02.0 $\sqrt{s} = 5.02 \text{ TeV}$ $\sqrt{s} = 5.02 \text{ TeV}$ JS JS + CMS + CMS 10-30 % 30-50 % $120 < p_{T}^{\text{jet}} < 140 \text{ GeV/c}$ $120 < p_{T}^{\text{jet}} < 140 \text{ GeV/c}$ anti- k_T jet anti- k_T jet 1.5 1.5 R = 0.4R = 0.4n = 1n = 1AA/pp 1.0 1.0 $p_{T}^{\text{track}} > 1 \text{ GeV/c}$ $p_{T}^{\text{track}} > 1 \text{ GeV/c}$ $|\eta^{\rm jet}| < 1.6$ < 1.6

0.5

 10^{-2}

 10^{-1}

 R_L

Yayun He (SCUT)

0.5

 10^{-2}

AA/pp

EECs of inclusive jets in HIC

 10^{-1}

 R_L

Partonic w/o showering outside of the medium

Charged hadrons, w. showering outside of the medium

Charged hadrons, w/o showering outside of the medium

Jet Observables

Jet as a whole

- Jet nuclear modification factor
- Jet anisotropic flow

Jet substructure

- > Jet shape
- Jet fragmentation function
- Groomed jet splitting function

 (p_T, η, ϕ)

EECs of Inclusive Jets

Nuclear effect, n=1

Nuclear effect, n=2

- Nuclear effects in AA (γ -triggered jet)
- From γ -triggered jets to inclusive jets
- One jet events for experiments
- Selection biased

