Searching for jet-induced diffusion wakes of quark gluon plasma via jet-track correlations in heavy ion collisions with the ATLAS detector

arXiv:2408.08599

Yeonju Go **Brookhaven National Laboratory**

Hard Probes 2024 Nagasaki, Japan Sep. 23-27 2024

Medium response induced by jets

- Typical structure of *medium response*;
 - enhancement in the jet direction, called e.g. wake
 - depletion in the opposite jet direction, called e.g. diffusion wake

Yeonju Go (BNL)

• When a high-p_T parton loses energy in medium, the energy may be transferred to the medium

Medium response (wake) in jet direction

- relative to the jet

Numerous observations of enhancement of low-p_T particles and particles at larger angles

but, hard to disentangle between in-medium parton shower modification and medium response

Diffusion wake using y-jets

• **Diffusion wake** (depletion) in boson-jet events; unlike di-jet events, a jet associated with a boson e.g. photon is NOT contaminated by

in-medium parton shower modification or wake caused by the other jet in the opposite direction

 CoLBT model predicts overall enhancement from multi-parton interaction (MPI) \rightarrow Jet-hadron angular correlations **not only in** ϕ **but also in** η

Yeonju Go (BNL)

Analysis selections

- Centrality 0-10%
- Photons
 - ⇒ 90-180 GeV and $|\eta|$ < 2.37
 - only leading prompt Isolated photons (direct+fragmentation photons)
- Jets
 - → $p_{\rm T}$ > 40 GeV and $|\eta|$ < 2.5
 - \rightarrow only leading jets in $\Delta \phi(\gamma, \text{jet}) > 3\pi/4$
- Tracks
 - \Rightarrow 0.5-2 GeV and $|\eta| < 2.5 \rightarrow$ low-p_T tracks; sensitive to the medium response
 - ⇒ $\Delta \phi$ (jet, track) > $\pi/2$ → in the opposite hemisphere
- Three $x_{J_{\gamma}}$ regions: $0.3 < x_{J_{\gamma}} < 0.6, 0.6 < x_{J_{\gamma}}$ larger jet energy loss

arXiv:2408.08599

< 0.8 and 0.8 <
$$x_{J\gamma}$$
 < 1.0
to less jet energy loss

 $|\Delta\eta(jet, track)|$ in pp collisions

arXiv:2408.08599

 The yield distributions as a function of $|\Delta\eta$ (jet, track)| in the three $x_{J\gamma}$ regions are consistent with each other within uncertainties in agreement with the theory expectation

 $|\Delta\eta(jet, track)|$ in Pb+Pb collisions

- Tracks produced from the bulk medium constitute a background
 - estimated using an event mixing technique
 - \rightarrow this "uncorrelated tracks" (Y_{uncorr}) is used as a reference for the track-jet correlation in photonjet events.
- Event mixing technique
 - A photon-jet pair in a given event is matched with tracks in a different minimum-bias (MB) Pb+Pb event
 - When mixing the two events, an MB Pb+Pb event is chosen to have similar properties as the signal event
 - i.e. ΣE_{T}^{FCal} , event plane angle, vertex z position

- Y_{corr}/Y_{uncorr} indicates the *relative modification of bulk medium*
- No clear diffusion wake signal found within uncertainties for the higher $x_{J_{\gamma}}$ regions
- Small diffusion wake signal in the lowest $x_{J\nu}$ region

 $N\gamma$ -jet $d\Delta\eta d\Delta\phi$

Relative yield ratio: Y_{corr}/Y_{uncorr}

- Y_{corr}/Y_{uncorr} indicates the *relative modification of bulk medium*
- No clear diffusion wake signal found within uncertainties for the higher $x_{J_{\gamma}}$ regions
- Small diffusion wake signal in the lowest $x_{J\nu}$ region

Yeonju Go (BNL)

Double ratio

arXiv:2408.08599

- The results are consistent with unity within uncertainties
 - \rightarrow no significant $x_{J\gamma}$ -dependence of the diffusion wake is found

Diffusion wake amplitude

- To quantify the diffusion wake, Gaussian fits are performed \rightarrow diffusion wake would have a *negative amplitude* ($a_{dw} < 0$)
- For probability distributions, Monte Carlo sampling method is used
 - statistical and systematic uncertainties and their correlations are considered
 - \Rightarrow the fit is repeated with the σ_{dw} fixed, representing a different hypothesis each time, while a_{dw} and a_0 are treated as free parameters

Diffusion Wake Amplitude Diffusion Wake Width $a_0 + a_{\rm dw} \cdot e^{-|\Delta\eta({\rm jet,track})|^2/(2\sigma_{\rm dw}^2)}$

11

Probability distributions

- Diffusion wake amplitude of best fit for the lowest $x_{J_{\gamma}}$ is 0.5-0.8% for the diffusion wake width range of 0.5-1.0
- highly correlated bin-by-bin

Yeonju Go (BNL)

arXiv:2408.08599

<u>Statistical uncertainty dominates in the probability distributions as systematic uncertainties are</u>

- A diffusion wake double amplitude $b_{\rm dwr}$ value smaller than -0.0058 can be ruled out at 95% confidence level

Stat. uncert. dominates in probability distribution; more statistics will be valuable

Yeonju Go (BNL)

Diffusion wake in dijet

- Diffusion wake is localized in $(\Delta \eta, \Delta \phi) = (0, \pi/2)$ → idea) use dijets samples of which two jets are separated enough in η to remove contaminations from each other
 - statistically abundant!

Summary

- Jet-track η and ϕ angular correlations in photon-jet events have been measured and finalized to search for *diffusion wake*
- The measurement is performed with three different ranges of $x_{J\nu}$ to select events with **different amounts of parton energy loss**
- The data provides probability limits on diffusion wake;
 - The CoLBT theory prediction of -0.0018 for the double ratio is consistent with the data within the 68% confidence level upper limit
 - \rightarrow the best fit of the diffusion wake amplitude for the lowest $x_{J_{\gamma}}$ is about 0.5-0.8% for the diffusion wake width range of 0.5-1.0

Find other ATLAS heavy ion results!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

See also talk by Dominik at 9:00AM (Wed.) for more photon-jet analyses

•		Ι-	
	06	-	
	0.0	-	
		-	
		-	
		-	
		-	
		-	
		-	
		-	
		-	
		-	
		-	
		_	
		13	
5	3	3	
	$\sigma_{\sf dw}$		

Diffusion wake: dependence on jet energy loss

- Smaller $x_{J\gamma} = p_T^{Jet}/p_T^{\gamma}$ indicates larger jet energy loss and longer path through the medium and hence larger medium response i.e., diffusion wake
- does

• However, the MPI signal has no significant dependence on the $x_{J_{\gamma}}$, while the diffusion wake

17

Systematic uncertainty

- the significance of the systematic uncertainty of each source of each observable
 - systematic uncertainty

• Not to double-count statistical uncertainty in systematic uncertainty, a χ^2 method is used to test

 \Rightarrow Systematic sources which pass the χ^2 are deemed systematically significant and considered as

18

Prompt Photons

• Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

E

Prompt Photons

• Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

Fragmentation photon

radiated from partons after the primary hard scattering

Prompt Photons

• Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

Fragmentation photon

radiated from partons after the primary hard scattering

• Decay photon

 \Rightarrow decayed from hadrons, such as $\pi^0 \rightarrow \gamma \gamma$

the two decay photons often have small opening angles

 \rightarrow reconstructed as a single high p_T γ

major background

