# Probing QCD dynamics with jet substructure in LHCb kinematics



#### Ezra D. Lesser (CERN)

on behalf of the LHCb Collaboration 25 September 2024  $(E, \vec{p})_{jet}$ 

 $\Delta R_{\text{jet},i}$ 

*R*<sub>iet</sub>

Hard Probes 2024 // Nagasaki, Japan











*b*-hadron spectra have been studied with excellent precision by the LHC experiments

LHCb Collab., JHEP 12 (2017) 026





- *b*-hadron spectra have been
  - What can we learn about heavy-flavor quark fragmentation?

• No inherent *b*-quark component in the proton wavefunction



- No inherent *b*-quark component in the proton wavefunction
  - → Prominent LO production is:  $gg \rightarrow b\overline{b}, \qquad q\overline{q} \rightarrow b\overline{b}$



- No inherent *b*-quark component in the proton wavefunction
  - → Prominent LO production is:  $gg \rightarrow b\overline{b}, \qquad q\overline{q} \rightarrow b\overline{b}$
- The gluons are frequently largely asymmetric in their momentum





- No inherent *b*-quark component in the proton wavefunction
  - → Prominent LO production is:  $gg \to b\overline{b}, \qquad q\overline{q} \to b\overline{b}$
- The gluons are frequently largely asymmetric in their momentum
- *bb* pairs are predominantly produced at small angles from the beam direction



#### A different kind of jet detector...



#### A different kind of jet detector... LHCb detector during Run 2 (2015-2018) • LHCb is a completely forward detector ECAL HCAL SPD/PS M4 M5 5m M3 -250mrad $(2 < \eta < 5)$ M2 RICH2 M1 Magnet **T**3 T2 RICH1 • Low pileup ( $\mu \approx 1$ ) Vertex 10m 15m 20m 5m Int. J. Mod. Phys. A 30 (2015) 1530022 10 25 Sep 2024

#### A different kind of jet detector... LHCb detector during Run 2 (2015-2018) • LHCb is a completely forward detector ECAL HCAL SPD/PS M4 M5 5m M3 -250mrad $(2 < \eta < 5)$ M2 RICH2 M1 Magnet **T**3 T2 RICH1 • Low pileup ( $\mu \approx 1$ ) Vertex Interaction Point (IP) 10m 15m 20m 5m Int. J. Mod. Phys. A 30 (2015) 1530022 E.D. Lesser 11 25 Sep 2024

### A different kind of jet detector...

5m



12

- LHCb is a completely forward detector  $(2 < \eta < 5)$
- Low pileup ( $\mu \approx 1$ )

Interaction Point (IP)

- LHC beampipe opened(!) for silicon tracking detectors to be placed closer to the beam
- Excellent primary vertex resolution of  $\sim$ 10 (transverse directions x, y) /  $\sim$ 40 (z)  $\mu$ m



### A different kind of jet detector...





#### A different kind of jet detector... LHCb detector during Run 2 (2015-2018) • LHCb is a completely **Full calorimetry** forward detector ECAL HCAL SPD/PS M4 M5 5m M3 -250mrad $(2 < \eta < 5)$ M2 Magnet RICH2 M1 RICH1 • Low pileup ( $\mu \approx 1$ ) Interaction Point (IP) • Measurement of $\gamma$ , $e^{\pm}$ , n, $K_L$ **Can reconstruct "full" jets with calorimetry** 15m Int. J. Mod. Phys. A 30 (2015) 1530022 E.D. Lesser 15 25 Sep 2024







• How are heavy  $q\bar{q}$  pairs (e.g.  $J/\psi$ ) produced according to QCD?







particle momentum fraction





• How are heavy  $q\bar{q}$  pairs (e.g.  $J/\psi$ ) produced according to QCD?



 Both prompt and non-prompt (feeddown) contributions



particle momentum fraction





• How are heavy  $q\bar{q}$  pairs (e.g.  $J/\psi$ ) produced according to QCD?



- Both prompt and non-prompt (feeddown) contributions
- Charmonium from b decays only carries ~50% of jet energy
   → surrounded by bjet fragmentation



particle momentum fraction





• How are heavy  $q\bar{q}$  pairs (e.g.  $J/\psi$ ) produced according to QCD?







• How are heavy  $q\bar{q}$  pairs (e.g.  $J/\psi$ ) produced according to QCD?







E.D. Lesser

#### Higher mass states











# NEW! H

#### Higher mass states







- Good agreement in non-prompt production (similar to  $J/\psi$ )
- Displaced  $\psi(2S)$  carries ~60% of jet transverse momentum





28



# NEW!

#### Higher mass states







# NEW!

#### Higher mass states













• Hard jets with mostly softer  $\psi(2S)$ 







- Hard jets with mostly softer  $\psi(2S)$
- What about harder  $\psi(2S)$  in any jet momentum range?





















• How is **tetraquark** /  $D\overline{D}^*$  molecule candidate  $\chi_{c1}(3872)$  produced?







• How is **tetraquark /**  $D\overline{D}^*$  **molecule** candidate  $\chi_{c1}(3872)$  produced?








• How is **tetraquark /**  $D\overline{D}^*$  **molecule** candidate  $\chi_{c1}(3872)$  produced?









• How is **tetraquark /**  $D\overline{D}^*$  **molecule** candidate  $\chi_{c1}(3872)$  produced?





#### Higher mass states





39

• How is **tetraquark** /  $D\overline{D}^*$  molecule candidate  $\chi_{c1}(3872)$  produced?



25 Sep 2024

#### Jet fragmentation functions





#### Jet fragmentation functions

• Measurement for **inclusive Z**<sup>0</sup>+**jets** (light quark enriched)





#### Jet fragmentation functions • Measurement for inclusive $Z^0$ +jets (light quark enriched) $low \qquad p_T^{jet} \qquad high$







E.D. Lesser

#### Jet fragmentation functions

• Measurement for **inclusive**  $Z^0$ +jets (light quark enriched)





*p*<sub>jet</sub>

 $\vec{p}_i$ 

 $Z^0$ 

#### Jet fragmentation functions

• Measurement for **inclusive Z**<sup>0</sup>+**jets** (light quark enriched)







44



# Probing parton emissions





• Invariant jet mass,  $m_{\rm jet} = \sqrt{E_{\rm jet}^2 - p_{\rm jet}^2} \approx \sqrt{Q_{\rm parton}^2}$ 

# Probing parton emissions



















• Cannot separate  $q\bar{q} \rightarrow q\bar{q}g$  corrections to gg and  $q\bar{q}$  at Born level





• Cannot separate  $q\bar{q} \rightarrow q\bar{q}g$  corrections to gg and  $q\bar{q}$  at Born level  $\rightarrow$  solution: use an IRC-safe algorithm like anti- $k_{\rm T}$  to define the flavor





- Cannot separate  $q\bar{q} \rightarrow q\bar{q}g$  corrections to gg and  $q\bar{q}$  at Born level  $\rightarrow$  solution: use an IRC-safe algorithm like anti- $k_T$  to define the flavor
- But soft gluons ruin this at NNLO







• Study D<sup>0</sup>-jet cross section





- Study *D*<sup>0</sup>-jet cross section with new flavor-tagging algorithms:
  - Winner-Take-All (WTA) + C/A reclustering
  - Interleaved Flavor Neutralization (IFN) arXiv:2306.07314 [hep-ph]
  - Flavor dressing (GHS) arXiv:2208.11138 [hep-ph]
  - CMP (distance metric modification)

New algorithms calculable at NNLO(+)



• Study *D*<sup>0</sup>-jet cross section with new flavor-tagging algorithms:

С

 $\overline{u}$ 

 $D^0$ 

- Winner-Take-All (WTA) + C/A reclustering
- Interleaved Flavor Neutralization (IFN) arXiv:2306.07314 [hep-ph]
- Flavor dressing (GHS) arXiv:2208.11138 [hep-ph]
- CMP (distance metric modification)

• New algorithms calculable at NNLO(+)

Simulations privately produced by E. Lesser, R. Xu







# New flavor tagging algorithms (b) B-



• Study B<sup>±</sup>-jet cross section

Simulations privately produced by E. Lesser, R. Xu







• Study B<sup>±</sup>-jet cross section

Simulations privately produced by E. Lesser, R. Xu

60







- Study B<sup>±</sup>-jet cross section
- Tagging fraction is much higher

Simulations privately produced by E. Lesser, R. Xu



- Study B<sup>±</sup>-jet cross section
- Tagging fraction is much higher

b

*B*<sup>-</sup>

How is substructure affected?

Simulations privately produced by E. Lesser, R. Xu









#### Conclusions



• LHCb is an excellent experiment for HF-jet studies in a mostly unexplored kinematic region!

#### Conclusions

- LHCb is an excellent experiment for HF-jet studies in a mostly unexplored kinematic region!
- Strong evidence of non-isolated charmonium production in higher mass states
  - Larger than expected in-shower production could explain this

S <u>arXiv:2312.05203</u> [hep-ph]

• Could imply that charmonium is not a clean probe for QGP initial conditions?



68



- LHCb is an excellent experiment for HF-jet studies in a mostly unexplored kinematic region!
  - Strong evidence of non-isolated charmonium production in higher mass states
    - Larger than expected **in-shower** production could explain this
    - Could imply that charmonium is not a clean probe for QGP initial conditions?
  - Ongoing studies using new flavor tagging algorithms (including Lund jet plane, jet mass, groomed observables, EECs, and others)
    - More exciting new results soon!

#### Conclusions



*Cooke, Ilten, Lönnblad, Mrenna* <u>arXiv:2312.05203</u> [hep-ph]



#### Backup

#### Two paths to heavy flavor



1) Reconstructing individual decay channels

- e.g.,  $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$
- Minimal bias on the reconstructed HF-hadron candidates
- 2) Reconstructing **secondary vertices (SVs)** 
  - Build SV from tracks which are displaced from the primary vertex (PV)





#### Two paths to heavy flavor



1) Reconstructing individual decay channels

• e.g.,  $B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$ 

• Minimal bias on the reconstructed HF-hadron candidates

- 2) Reconstructing secondary vertices (SVs)
  - Build SV from tracks which are displaced from the primary vertex (PV)






 Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons



• Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons

Decay search

| Head (exactly): 🔻                                                                                                                           | $B^+$ X   V                                                                          | Contains (all of): 🔻 | $D^0$ ×        | ×        | Show                                                      | only selected: |    |                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|----------------|----------|-----------------------------------------------------------|----------------|----|-----------------------------|--|
| Tags (none of): 🔻                                                                                                                           | undefined-unstable × charge-violating ×<br>lepton-flavour-violating ×                | × ×                  | Stripping line |          |                                                           |                | ~  |                             |  |
| $\square \begin{array}{c} B^+ \to (\overline{D}^0 \to K^+ \pi^- (\pi^0 \to \gamma \gamma)) \pi^+ \\ \textbf{2 Stripping lines} \end{array}$ |                                                                                      |                      |                |          |                                                           |                |    |                             |  |
| $B^+  ightarrow ($ 3 Strippin                                                                                                               | $(\overline{D}^0  ightarrow K^+ \pi^- \pi^- \pi^+) \pi^+$ g lines                    |                      |                | "Ntuple  | e W                                                       | izaro          | d" | ' for selecting decay(s)    |  |
| $\textcircled{B^+ \to (} 6 \text{ Strippin}$                                                                                                | $(\overline{D}^0 	o K^+ \pi^-) \pi^+$ g lines                                        |                      |                | • Will b | e av                                                      | /ailal         | bl | e for <b>LHCb open data</b> |  |
| $B^+  ightarrow ($ 2 Strippin                                                                                                               | $B^+ 	o (\overline{D}^0 	o K^- K^+ (\pi^0 	o \gamma\gamma)) \pi^+$ 2 Stripping lines |                      |                |          | <ul> <li>Currently in alpha testing (internal)</li> </ul> |                |    |                             |  |
| $\square \qquad B^+ \to ($ 2 Strippin                                                                                                       | $(\overline{D}^0 	o K^- K^+ K^+ \pi^-) \pi^+$ g lines                                |                      |                |          |                                                           |                |    |                             |  |
| $\square \qquad B^+ \to ($ 3 Strippin                                                                                                       | $(\overline{D}^0 	o K^- K^+ \pi^- \pi^+) \pi^+$ g lines                              |                      |                |          |                                                           |                |    |                             |  |



- Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons
- Several (including some ongoing) LHCb measurements use this approach



- Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons
- Several (including some ongoing) LHCb measurements use this approach
- Possibility to reconstruct multiple decay channels at once

• E.g., 
$$B^{\pm} \rightarrow (J/\psi \rightarrow \mu^{+}\mu^{-}) K^{\pm}$$
 plus  $B^{\pm} \rightarrow (D^{0} \rightarrow K^{\pm}\pi^{\mp}) \pi^{\pm}$ 



- Several dedicated hadronic triggers for high-statistics jet measurements containing a wide variety of hadrons
- Several (including some ongoing) LHCb measurements use this approach
- Possibility to reconstruct multiple decay channels at once

• E.g., 
$$B^{\pm} \to (J/\psi \to \mu^{+}\mu^{-}) K^{\pm}$$
 plus  $B^{\pm} \to (D^{0} \to K^{\pm}\pi^{\mp}) \pi^{\pm}$ 

- Still impossible to reconstruct all HF hadrons through all decay channels
  - Must be taken into consideration when studying new jet flavor algorithms





• Use Pythia 8 with HardQCD:all=on (enabling all  $2 \rightarrow 2$  matrix elements)







- Use Pythia 8 with HardQCD:all=on (enabling all  $2 \rightarrow 2$  matrix elements)
- Check at parton level for at least one HF quark after the shower
  - HF quark required to be within  $1 < |\eta| < 6$  (for hadrons,  $2 < |\eta_{\rm LHCb}| < 5$ )







- Use Pythia 8 with HardQCD:all=on (enabling all  $2 \rightarrow 2$  matrix elements)
- Check at parton level for at least one HF quark after the shower
  - HF quark required to be within  $1 < |\eta| < 6$  (for hadrons,  $2 < |\eta_{\rm LHCb}| < 5$ )
- Repeat hadronization until the HF hadron of interest is produced in the event







- Use Pythia 8 with HardQCD:all=on (enabling all  $2 \rightarrow 2$  matrix elements)
- Check at parton level for at least one HF quark after the shower
  - HF quark required to be within  $1 < |\eta| < 6$  (for hadrons,  $2 < |\eta_{LHCb}| < 5$ )
- Repeat hadronization until the HF hadron of interest is produced in the event
- Reconstruct jets and study those containing the HF hadron of interest







See **Andrew Larkoski's talk** from public LHCb meeting on flavor algorithms: <u>https://indico.cern.ch/e/LHCb-jet-flavor</u>



See **Andrew Larkoski's talk** from public LHCb meeting on flavor algorithms: <u>https://indico.cern.ch/e/LHCb-jet-flavor</u>

Caletti, Larkoski, Marzani, Reichelt JHEP 10 (2022) 158

• Reconstruct jets in way you like (e.g. standard anti- $k_{\rm T}$ )



See **Andrew Larkoski's talk** from public LHCb meeting on flavor algorithms: <u>https://indico.cern.ch/e/LHCb-jet-flavor</u>

- Reconstruct jets in way you like (e.g. standard anti- $k_{\rm T}$ )
- Recluster jets using IRC-safe algorithm (e.g. C/A) and WTA recombination
  - Defines jet axis as the one which follows the hardest branch



See **Andrew Larkoski's talk** from public LHCb meeting on flavor algorithms: <u>https://indico.cern.ch/e/LHCb-jet-flavor</u>

- Reconstruct jets in way you like (e.g. standard anti- $k_{\rm T}$ )
- Recluster jets using IRC-safe algorithm (e.g. C/A) and WTA recombination
  - Defines jet axis as the one which follows the hardest branch
- Call the jet flavor the sum of flavors which lie along the WTA axis



See **Andrew Larkoski's talk** from public LHCb meeting on flavor algorithms: <u>https://indico.cern.ch/e/LHCb-jet-flavor</u>

- Reconstruct jets in way you like (e.g. standard anti- $k_{\rm T}$ )
- Recluster jets using IRC-safe algorithm (e.g. C/A) and WTA recombination
  - Defines jet axis as the one which follows the hardest branch
- Call the jet flavor the sum of flavors which lie along the WTA axis
- This WTA flavor definition is completely soft resilient  $\rightarrow$  IR-safe
  - Not collinear safe, so introduce (perturbative) "flavor fragmentation function"



See **Andrew Larkoski's talk** from public LHCb meeting on flavor algorithms: <u>https://indico.cern.ch/e/LHCb-jet-flavor</u>

Caletti, Larkoski, Marzani, Reichelt JHEP 10 (2022) 158

• Reconstruct jets in way you like (e.g. standard anti- $k_{\rm T}$ )













Caletti, Larkoski, Marzani, Reichelt

JHEP 10 (2022) 158



# Charm quark fragmentation





CERN

# Charm quark fragmentation







# Charm quark fragmentation







3 Sep 2024

E.D. Lesser

94