Energy-energy correlators in jets across collision systems with ALICE

Anjali Nambrath for the ALICE collaboration

University of California, Berkeley

nambrath@berkeley.edu

Hard Probes 2024 September 22-27, Nagasaki

In this talk: differential measurements of EECs

1. EECs in pp: final results universal shape independent of jet p_{T}

2. First measurement of EECs in D⁰-tagged jets *probing flavor effects*

3. First measurement of EECs in p-Pb probing EECs in high-multiplicity environments

The two-point EEC is calculated from pairs of tracks.

 $R_L = \sqrt{\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2}$

EEC definition:

$$\frac{d\sigma_{EEC}}{dR_L} = \sum_{i,j} \int d\sigma(R'_L) \frac{p_{T,i} p_{T,j}}{p_{T,jet}^2} \delta(R'_L - R_{L,ij})$$

- For each pair of tracks inside the jet, calculate the energy weight.
- 2. Count the number of weighted track pairs as a function of R_1 .

EECs show a clear transition region.

- Transition between perturbative (large R_L, partonic) and non-perturbative regimes (hadronic, small R₁)
- Time evolution of jet formation is imprinted onto the EEC angular scaling
- EECs let us probe jet formation and confinement!

EECs in pp

Clear separation of perturbative and nonperturbative regions.

EEC peak is visibly dependent on jet p_{T} .

Universal transition region after rescaling the *x*-axis to $\langle p_T^{ch jet} \rangle R_L$ (common peak position and height).

 $\Sigma_{EEC}(R_L)$

10-2

How does the shower depend on flavor?

- At the largest R_L, the scaling behavior in heavy-flavor jets is identical to light quark jets.
- Turnover exhibits a mass dependence!
 - Flavor effects can be probed with ratios to inclusive jets.

heavy guark jets

- Change of shape at small angles is a consequence of the dead cone.

Comparing D⁰-tagged jet to inclusive jet EECs

Upper panel:

- p_{T} cut on leading track in inclusive jets to study fragmentation bias
- slopes at large R_L seem different,
 significant suppression at all R_L
- peak positions are similar due to gluon contribution to inclusive

From the ratios:

- D^0 /inclusive \rightarrow mass + Casimir
- $D^0/LF \rightarrow$ isolated mass effects

Clear mass effect in D⁰ jets!

See poster by P. Dhankher for more details on the D⁰ EEC measurement! See poster by B. Liang-Gilman for D⁰ Monte Carlo studies!

Talk by J. Klein tomorrow at 12:10pm on more HF jets from ALICE!

ALT-PREL-579241

Probing hadronization with pp EECs

Lund string models: PYTHIA 8, Sherpa Lund Cluster models: Herwig 7, Sherpa AHADIC

Inclusive jets:

- PYTHIA & Herwig perform well, Herwig captures peak position
- Sherpa Lund does well, AHADIC does not
- both cluster models peak at smaller R₁

Heavy flavor jets:

- data favors PYTHIA's implementation
- Herwig overpredicts inclusive jet EECs; underpredicts in HF
- Sherpa Lund underpredicts the data
- AHADIC fails to describe the peak

Cluster hadronization for higher p_{T} jets, string-breaking models for D⁰ jets?

Are EECs modified in p-Pb?

Differences from pp:

- initial state (nPDF, isospin)
- final-state interactions?
- comovers? collectivity??

EECs in p-Pb are a window into interactions in small systems.

EECs in p-Pb have the same overall shape as pp.

About the data:

- R = 0.4 charged-particle jets
- $p_{T}^{ch jet}$ in [20, 80] GeV/c
- threshold cut: $p_{\tau}^{trk} > 1 \text{ GeV}/c$

These are subtracted for UE and corrected for detector effects:

- background subtraction for jet p_{τ} and EEC distribution
- bin-by-bin correction for detector effects

10

EEC measurements in more complex systems require background subtraction techniques.

1. Subtract UE energy density from the jet p_{T} :

$$\rho = \text{median} \left\{ \frac{p_{\text{T,jet}}^{k_{\text{T}}}}{A_{\text{jet}}^{k_{\text{T}}}} \right\} \cdot C \qquad C = \frac{\sum_{j} A_{j}}{A_{\text{acc}}}$$

- 2. Correct the EEC distribution for combinatorial background:
 - signal-signal (what we want!)
 - signal-background
 - background-background

hard scattering

We use the perpendicular cone to estimate the latter two contributions.

These subtraction steps are also performed for the pp baseline.

EECs are modified in p-Pb in the lowest jet p_{T} bin.

- Significant difference between EECs in p-Pb compared to pp!
 - jet structure appears to be altered only in the lowest jet $p_{\rm T}$ range
- Initial state effect?
 - some models lead to a qualitatively similar effect
- Final state effect?
 - modification is qualitatively consistent with ALICE measurement^{*} of HM/MB z_{ch} in pp

* arXiv:2311.13322

The transition region in p-Pb resembles pp.

- Universality of the EEC peak position across jet p_{τ} and collision system.
- EEC peak height for 20-40 GeV/c jets is slightly lower than for other jets.

2

X

ALICE Preliminary

p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

anti- k_{T} ch jets, R = 0.4

all pairs, $p_{\tau}^{trk} > 1.0 \text{ GeV}/c$

Transition region

peak $\approx 2.43 \text{ GeV}/c$

- (20, 40) GeV/c

← (60, 80) GeV/*c*

± 0.07 GeV/c

range

Varying the track cut changes the EEC behavior at large R_{L} .

Strong sensitivity to track p_{T} cut in low p_{T} jets!

non-perturbative effects increase for lower jet p_{T}

Track cut modifies the enhancement in ratio

 but not the small-R_L suppression

Suggests that the origin of the effect lies in softer interactions at small x!

Neither CGC or nPDF models fully capture the enhancement and suppression seen in data.

 CGC predictions^{*} from Haoyu Liu et. al., over a range of saturation scale values

* models provided by Haoyu Liu, Ian Moult, and Xiaohui Liu

Neither CGC or nPDF models fully capture the enhancement and suppression seen in data.

- CGC predictions^{*} from Haoyu Liu et. al., over a range of saturation scale values
- PYTHIA results use:
 - nPDF: EPPS21nlo_CT18Anlo
 - PDF: CT14nlo
- nPDFs are within ~1 σ at small R_{L} but these are very large uncertainties

* models provided by Haoyu Liu, Ian Moult, and Xiaohui Liu

Higher-twist formalism calculations come closer to reproducing the data.

- HT calculations^{*} of final-state interactions from Yu Fu et al. show a stronger effect is possible
 - *R*_{pPb} (nuclear modification of nPDF) is chosen to be 0.85 (for *x*=0.01)
 - \hat{q} is 0.02 GeV²/fm (BDMPS 1997)
 - L is varied (R_{Pb} is 5.5 fm)
- Simulation (e.g. JETSCAPE) required for a more realistic estimate!

$log(R_1)^2$ shape of the p-Pb/pp ratio — why?

- HT calculations^{*} of final-state interactions from Yu Fu et al. show a stronger effect is possible
 - *R*_{pPb} (nuclear modification of nPDF) is chosen to be 0.85 (for *x*=0.01)
 - \hat{q} is 0.02 GeV²/fm (BDMPS 1997)
 - L is varied (R_{Pb} is 5.5 fm)
- The ratio appears to follow a $\log(R_{L})^{2}$ scaling. Why: change in q/g ratio?

Summary and outlook

- Universality of EEC shape and turnover in pp
- EECs are altered in HF jets
 - dramatic reduction in amplitude clear flavor effect
- EECs are modified in p-Pb
 - modification is not explained by purely initial-state models

More EECs from ALICE:

Preeti Dhankher D⁰-jet EEC measurement poster session tonight

Beatrice Liang-Gilman D^o-jet EECs in Monte Carlo poster session tonight

Anjali Nambrath **p-Pb EEC measurement** poster session tonight

Ananya Rai E3C/E2C measurement talk today – 12:10pm

Backup

D⁰ reconstruction steps

D⁰ candidates were D⁰-tagged charged jets K. were created using the reconstructed from daughter anti- k_{τ} algorithm (R=0.4) tracks using topological and for each candidate. particle identification selections $(D^0 \rightarrow K^- + \pi^+, and charge conjugates).$ Corrected the EECs for the charged jets, anti-k_T, R = 0.4 Invariant mass analysis was performed to with $D^0 \rightarrow K^-\pi^+$ and charge coni efficiency of D⁰-tagged jet remove combinatorial $K^{-}\pi^{+}$ pairs surviving reconstruction and the D⁰ selections. removed the contribution Promot D⁰ from beauty decays. deband (SB) and charge conj. signal region signal + background ed iets. anti-k-. R = 0.4 - background sideband (SB) 30 p_____(GeV/c) nd charge coni $10 \le p_{\pi}^{\text{ch. jet}} \le 20 \text{ GeV}/c, |\eta_{-1}| \le 0.5$ iets. anti- k_{π} , R = 0.4 $B \le \rho_{1}^{D^{0}} < 12 \text{ GeV}/c, |v| \le 0.1$ < 20 GeV/c In 1<0.5 12 GeV/c, ly _l ≤ 0.8 Corrected the EECs for detector effects with a bin-by-bin correction method. ΔR_{STD-D^0}

Perp. cone for combinatorial EEC background

- Particles from jet: sig + bkg
- Particles from perp cone: bkg'
- Pairs in the combined cone:

(sig + bkg + bkg')(sig + bkg + bkg') = sig*sig + 2sig*bkg + bkg*bkg + 2sig*bkg' + 2bkg*bkg' + bkg'*bkg' jet-perp perp-perp

Perp. cone for combinatorial EEC background

- Particles from jet: sig + bkg
- Particles from perp cone: bkg'
- Pairs in the combined cone:

(sig + bkg + bkg')(sig + bkg + bkg') = sig*sig + 2sig*bkg + bkg*bkg + 2sig*bkg' + 2bkg*bkg' + bkg'*bkg' jet-perp perp-perp

- Sig-bkg pairs: jet-perp 2 perp-perp
- Bkg-bkg pairs: perp-perp
- Total background: jet-perp perp-perp

p-Pb and pp comparison

Quark-jet and gluon-jet EECs

Quark-jet and gluon-jet and D⁰-tagged jet EECs

