

Extraction of jet-medium interaction details through jet substructure for inclusive and gamma-tagged jets

JETSCAPE, arXiv:2301.02485; JETSCAPE, in preparation

Yasuki Tachibana for the JETSCAPE Collaboration

Groomed jet substructures

Hard splitting identified by Soft Drop

- Largest angular branching with a sufficient momentum fraction ($z_g > z_{cut}$) within a jet
- Relatively well dominated by perturbative parton splitting

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, JHEP 05, 146 (2014)

Groomed substructures modification in inclusive jets

Medium effects on inclusive jet substructure

- Barely noticeable modification in z_{q}
- Narrower splittings in jets with medium effects
- Trigger jets by jet- $p_{\rm T}$ (after energy loss)

- Actual substructure modification? - Selection bias (substructure dependence in E-loss)?

Y. Tachibana for the JETSCAPE Collaboration, the HP2024, September 23rd, 2024

JETSCAPE, arXiv:2301.02485

y-tagged jet

- Jets detected with a hard photon in the backward direction
- Primarily produced via initial hard Compton scattering (quark jet dominance)
- No medium effects on the photon $(p_T^{\gamma} \sim p_T^{\text{parent}})$

- Exploring flavor dependence - Controlling the effects of selection bias

γ -jet Correlations —

Talk by C. Sirimanna [Wed, 9:40 AM]

- Substructures \rightarrow <u>This Talk</u>

Simulations with the JETSCAPE framework

JETSCHPE Y. Tachibana for the JETSCAPE Collaboration, 4 HP2024, September 23rd, 2024

JETSCAPE framework

MC event generator package for heavy ion collisions

- General, modular and extensible
- Communication between modules
- Available on GitH github.com/JETSCAPE

JETSCAPE, arXiv:1903.07706

JETSCAPE framework

MC event generator package for heavy ion collisions

- General, modular and extensible
- Communication between modules
- Available on **GitH** github.com/JETSCAPE

JETSCAPE, arXiv:1903.07706

Small-Q

In-vacuum

 $Q^2 = p^{\mu}p_{\mu} - m^2$: virtuality (off-shellness)

JETSCOPE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

In-vacuum: Virtuality ordered splitting

Small-Q

In-medium

$Q^2 = p^{\mu}p_{\mu} - m^2$: virtuality (off-shellness)

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

In-vacuum: Virtuality ordered splitting

In-vacuum: Virtuality ordered splitting

Small-Q

In-medium

$Q^2 = p^{\mu}p_{\mu} - m^2$: virtuality (off-shellness)

JETSCOPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

Large-Q: Medium effect on top of in-vacuum splitting

Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

In-vacuum: Virtuality ordered splitting

Large-Q: Medium effect on top of in-vacuum splitting

Small-Q: Splitting driven almost purely by medium effects

Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

In-vacuum: Virtuality ordered splitting

Large-Q: Medium effect on top of in-vacuum splitting

Module(s): MATTER Majumder, Kordell, Cao, Kumar

Small-Q: Splitting driven almost purely by medium effects

Module(s): LBT,

Wang, Zhu, Luo, He, Cao

MARTINI,

Schenke, Park, Gale, Jeon

AdS/CFT Pablos, et al.

Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

In-vacuum: Virtuality ordered splitting

Large-Q: Medium effect on top of in-vacuum splitting

Module(s): MATTER Majumder, Kordell, Cao, Kumar $Q \ge Q_{\rm sw}$ Switching between modules for parton by parton Small-Q: Splitting driven almost purely by medium effects Module(s): LBT,

Wang, Zhu, Luo, He, Cao

MARTINI,

Schenke, Park, Gale, Jeon

AdS/CFT Pablos, et al.

p+p simulation setup JETSCAPE PRC102, 054906 (2020)

Jet Shower

Hard Scattering: (1) Single Parton [For Testing Purpose] (Fixed initial Energy, no ISR, no MPI)

> (2) Pythia8 [Realistic Event Generation] (w/ ISR and MPI)

Parton Shower: MATTER (vacuum)

Hadronization: Lund String

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

Setups

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

Setups

JETSCHEE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

Results

$r_{\rm g}$ -modification: single parton simulations

Tachibana for the JETSCAPE Collaboration, 📩 HP2024, September 23rd, 2024

Eliminating the E-loss selection bias

r_{g} -modification: inclusive vs γ -tagged

r_{g} -modification: γ -tagged jets

Tachibana for the JETSCAPE Collaboration, 📩 HP2024, September 23rd, 2024

Eliminating the E-loss selection bias

m_{σ} -modification from single parton simulations

Y. Tachibana for the JETSCAPE Collaboration, 📥 HP2024, September 23rd, 2024

Eliminating the E-loss selection bias

m_{σ} -modification: inclusive vs γ -tagged

m_{σ} -modification: inclusive vs γ -tagged

Tachibana for the JETSCAPE Collaboration, 📥 HP2024, September 23rd, 2024

Eliminating the E-loss selection bias

Comparison with Experimental Data

r_{g} -distribution for γ -tagged jet, compared with CMS data

JETSERFE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

- Capture the trend of less narrowing for smaller $x_{J\gamma}$ -cut - Awaiting data with finer bins to observe flavor dependence

Summary

Soft Drop groomed jet substructure

- Relatively well dominated by perturbative parton splitting
- Selection bias rather than actual structural modification for inclusive jets (e.g. narrowing)
- γ -tagged jet \rightarrow control of the selection bias, flavor dependence (quark-jet dominance)

Simulations with the JETSCAPE framework

- Multi-stage jet shower description (high-Q: virtuality-driven, low-Q: medium effect-driven)
- 2-initial hard process setups: (1) Single parent parton with fixed flavor and energy, (2) Realistic Pythia8 hard scatterings

Inclusive vs γ -tagged jet substructures

- Prominent modification (broadening) in γ -tagged jets, dominated by quark jet characteristics - Moderate modification in inclusive jets, dominated by gluon jet characteristics
- Actual structural modification accessible by controlling the selection bias effects via $x_{J_{\gamma}}$ -cut

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

Thanks to my collaborators!

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

JETSCAPE Collaboration

Presentations at HP2024

Jets with hadronic rescatterings

Talk by H. Roch [Mon, 6:10 PM]

Bayesian jet studies

Talk by P. Jacobs [Mon, 3:40 PM]

Jet EEC

-

-

Talk by Y. He [Tue, 9:20 AM]

- Jet-soft correlations in small systems

Talk by S. Jeon [Tue, 4:15 PM]

Photon-jet correlations

Talk by C. Sirimanna [Wed, 9:40 AM]

- ep, e^+e^- , pp studies with the XSCAPE framework **Poster by R. Fries [Tue, Poster]**

Backup Slides

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, APR2024, September 23rd, 2024

Multi-stage jet evolution in JETSCAPE Majumder, Putschke, PRC 93, 054909 (2016), JETSCAPE, PRC96, 024909 (2017)

In-vacuum

In-vacuum: Virtuality ordered splitting

Small-Q

$Q^2 = p^{\mu}p_{\mu} - m^2$: virtuality (off-shellness)

JETSEAFE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

In-medium

Small-Q

$Q^2 = p^{\mu}p_{\mu} - m^2$: virtuality (off-shellness)

JETSCOPE Y. Tachibana for the JETSCAPE Collaboration, the HP2024, September 23rd, 2024

In-vacuum: Virtuality ordered splitting

$Q^2 = p^{\mu}p_{\mu} - m^2$: virtuality (off-shellness)

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

In-vacuum: Virtuality ordered splitting

Large-Q: Medium effect on top of in-vacuum splitting

In-vacuum: Virtuality ordered splitting

Large-Q: Medium effect on top of in-vacuum splitting

Small-Q: Splitting driven almost purely by medium effects

In-vacuum: Virtuality ordered splitting

- Large-Q: Medium effect on top of in-vacuum splitting

Small-Q: Splitting driven almost purely by medium effects

Cannot be described by a single model \rightarrow Combination of multiple models

Coherence effects

Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, PLB707, 156-159 (2012) J. Casalderrey-Solana, E. Iancu, JHEP08, 015 (2011)

- Scale evolution of QGP constituent distribution Kumar, Majumder, Shen, PRC101, 034908 (2020)
- Less interaction for large- Q^2 partons

 \rightarrow Implemented in MATTER

Effective jet-quenching strength

$$\hat{q}_{\mathrm{HTL}} \cdot f(Q^2)$$

$$f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)}$$

$$\hat{q}_{\rm HTL} = C_a \frac{42\zeta(3)}{\pi} \alpha_{\rm s}^{\rm run} \alpha_{\rm s}^{\rm fix} T^3 \ln \left[\frac{2ET}{6\pi T^2 \alpha_{\rm s}^{\rm fix}} \right]$$

Coherence effects

Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, PLB707, 156-159 (2012) J. Casalderrey-Solana, E. Iancu, JHEP08, 015 (2011)

- Scale evolution of QGP constituent distribution Kumar, Majumder, Shen, PRC101, 034908 (2020)
- Less interaction for large- Q^2 partons

 \rightarrow Implemented in MATTER

Effective jet-quenching strength

$$\hat{q}_{\mathrm{HTL}} \cdot f(Q^2)$$

$$f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)}$$

$$\hat{q}_{\rm HTL} = C_a \frac{42\zeta(3)}{\pi} \alpha_{\rm s}^{\rm run} \alpha_{\rm s}^{\rm fix} T^3 \ln \left[\frac{2ET}{6\pi T^2 \alpha_{\rm s}^{\rm fix}} \right]$$

Coherence effects

Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, PLB707, 156-159 (2012) J. Casalderrey-Solana, E. Iancu, JHEP08, 015 (2011)

- Scale evolution of QGP constituent distribution Kumar, Majumder, Shen, PRC101, 034908 (2020)
- Less interaction for large- Q^2 partons

 \rightarrow Implemented in MATTER

Effective jet-quenching strength

$$\hat{q}_{\mathrm{HTL}} \cdot f(Q^2)$$

$$f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)}$$

$$\hat{q}_{\rm HTL} = C_a \frac{42\zeta(3)}{\pi} \alpha_{\rm s}^{\rm run} \alpha_{\rm s}^{\rm fix} T^3 \ln \left[\frac{2ET}{6\pi T^2 \alpha_{\rm s}^{\rm fix}} \right]$$

• p+p simulation setup JETSCAPE PRC102, 054906 (2020)

p+p simulation setup JETSCAPE PRC102, 054906 (2020)

Hadronization: Lund String

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

- Hard Scattering: Pythia8 (w/ ISR FSR)
- **Parton Shower:** MATTER (vacuum)

p+p simulation setup JETSCAPE PRC102, 054906 (2020)

Hadronization: Lund String

JETSCAPE PP19 tune [jetscape_user_PP19.xml]

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

- Hard Scattering: Pythia8 (w/ ISR FSR)
- **Parton Shower:** MATTER (vacuum)

p+p simulation setup JETSCAPE PRC102, 054906 (2020)

Hadronization: Lund String

JETSCAPE PP19 tune [jetscape_user_PP19.xml]

A+A simulation setup JETSCAPE, PRC107, 034911 (2023)

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

- Hard Scattering: Pythia8 (w/ ISR FSR)
- **Parton Shower:** MATTER (vacuum)

p+p simulation setup JETSCAPE PRC102, 054906 (2020)

Hadronization: Lund String

JETSCAPE PP19 tune [jetscape_user_PP19.xml]

A+A simulation setup JETSCAPE, PRC107, 034911 (2023)

Jet Shower

Hard Scattering: Pythia8 (w/ ISR FSR) **Parton Shower:** MATTER+LBT (recoil on, $Q_{sw} = 2 \text{ GeV}$) Hadronization: Lund String

JETSERFE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

- **Hard Scattering:** Pythia8 (w/ ISR FSR)
- **Parton Shower:** MATTER (vacuum)

p+p simulation setup JETSCAPE PRC102, 054906 (2020)

Hadronization: Lund String

JETSCAPE PP19 tune [jetscape_user_PP19.xml]

A+A simulation setup JETSCAPE, PRC107, 034911 (2023)

Jet Shower

Hard Scattering: Pythia8 (w/ ISR FSR) **Parton Shower:** MATTER+LBT (recoil on, $Q_{sw} = 2 \text{ GeV}$) Hadronization: Lund String

Tachibana for the JETSCAPE Collaboration, 📩 HP2024, September 23rd, 2024

Jet Shower

- **Hard Scattering:** Pythia8 (w/ ISR FSR)
- **Parton Shower:** MATTER (vacuum)

Jet and single particle energy loss

Pb+Pb collisions at 5.02 TeV

JETSCAPE V. Tachibana for the JETSCAPE Collaboration, the Magazian September 23rd, 2024

Jet and single particle energy loss JETSCAPE, PRC107, 034911 (2023)

Pb+Pb collisions at 2.76 TeV

The same parameter set as 5.02 TeV is used

Inclusive jet $R_{\Delta \Delta}$

Y. Tachibana for the JETSCAPE Collaboration, the HP2024, September 23rd, 2024

Charged particle R_{AA}

Jet and single particle energy loss **JETSCAPE, PRC107, 034911 (2023)**

Au+Au collisions at 200 GeV

The same parameter set as 5.02 TeV is used

Charged jet R_{AA}

JETSEAFE Y. Tachibana for the JETSCAPE Collaboration, the Magazian September 23rd, 2024

Pion R_{AA}

Jet and single particle energy loss **JETSCAPE, PRC107, 034911 (2023)**

Au+Au collisions at 200 GeV

The same parameter set as 5.02 TeV is used

Charged jet R_{AA}

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

Pion R_{AA}

Jet Fragmentation Function

$$D(p_{\rm T}^{\rm trk}) = \frac{1}{N_{\rm jet}} \sum_{jet} \frac{dN_{\rm trk}}{dp_{\rm T}^{\rm trk}} \bigg|_{\rm in jet}$$

JETSERFE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

JETSCAPE, arXiv:2301.02485

Jet Fragmentation Function

$$D(p_{\rm T}^{\rm trk}) = \frac{1}{N_{\rm jet}} \sum_{jet} \frac{dN_{\rm trk}}{dp_{\rm T}^{\rm trk}} \bigg|_{\rm in je}$$

JETSERFE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

JETSCAPE, arXiv:2301.02485

Jet Fragmentation Function

$$D(p_{\rm T}^{\rm trk}) = \frac{1}{N_{\rm jet}} \sum_{jet} \frac{dN_{\rm trk}}{dp_{\rm T}^{\rm trk}} \bigg|_{\rm in jet}$$

JETSEAFE Y. Tachibana for the JETSCAPE Collaboration, the MP2024, September 23rd, 2024

JETSCAPE, arXiv:2301.02485

Jet splitting function

Y. Tachibana for the JETSCAPE Collaboration, 📥 HP2024, September 23rd, 2024

JETSCAPE, arXiv:2301.02485

Jet splitting function

JETSCAPE Y. Tachibana for the JETSCAPE Collaboration, the P2024, September 23rd, 2024

JETSCAPE, arXiv:2301.02485

Splitting radial distance distribution

- Competition between two opposing effects
 - Jet broadening by medium effect VS
 - Larger energy loss for broader jets

JETSCAPE, arXiv:2301.02485

g

Splitting radial distance distribution

- Competition between two opposing effects
 - Jet broadening by medium effect VS
 - Larger energy loss for broader jets

JETSCAPE, arXiv:2301.02485

g

γ -tagged jet substructures

- $X_{J_{\gamma}} = p_T^{jet} / p_T^{\gamma}$ dependence \rightarrow energy-loss effect (trigger-bias)

Tachibana for the JETSCAPE Collaboration, 📩 HP2024, September 23rd, 2024

JETSCAPE, in preparation

 p_{T}^{γ}

γ -tagged jet substructures

- $X_{J_{\gamma}} = p_T^{jet} / p_T^{\gamma}$ dependence \rightarrow energy-loss effect (trigger-bias)

JETSCAPE, in preparation

 p_{T}^{γ}

γ -tagged jet substructures

- $X_{J_{\gamma}} = p_T^{jet} / p_T^{\gamma}$ dependence \rightarrow energy-loss effect (trigger-bias)

JETSCAPE, in preparation

 p_{T}^{γ}

JETSCAPE, in preparation

Summary

Multi-stage evolution of jet shower in JETSCAPE

- Q^2 -dependence in jet-medium interaction due to coherence effects
- Simultaneous description of jet and single particle at various $\sqrt{s_{
 m NN}}$

Jet substructure modifications

- Decomposition of multiple contributing effects by cross-analyses with γ -tagged jet
- Sizable sensitivity of fragmentation function at large- $p_{\rm T}$ to coherence effects - Small sensitivity of momentum fraction of hard partonic splittings to medium effects - Narrowing of hard partonic splittings of *inclusive triggered* jets due to energy loss - Suppression of broadening in hard partonic splittings due to coherence effects

Multi-stage jet evolution in JETSCAPE **JETSCAPE, PRC96, 024909 (2017)**

MATTER

Virtuality ordered splitting

Higher Twist formalism

LBT

Higher Twist formalism

Fachibana for the JETSCAPE Collaboration, the HP 2024, September 23rd, 2024

Small-Q

Virtuality separation scale: Q_{sw}

AMY formalism

AdS/CFT

Diffusion into medium

 $\mathcal{N} = 4$ super Yang-Mills

Multi-stage jet evolution in JETSCAPE **JETSCAPE, PRC96, 024909 (2017)**

Large-Q

Switching between modules for parton by parton

MATTER

Virtuality ordered splitting

Higher Twist formalism

LBT

Higher Twist formalism

Fachibana for the JETSCAPE Collaboration, the HP 2024, September 23rd, 2024

Small-Q

aration scale: Q_{sw}

Small- $Q(\langle Q_{sw}\rangle)$

On-shell parton transport

AMY formalism

AdS/CFT

Diffusion into medium

 $\mathcal{N} = 4$ super Yang-Mills

Multi-stage jet evolution in JETSCAPE **JETSCAPE, PRC96, 024909 (2017)**

Graph of parton shower generated by JETSCAPE

Centrality dependence JETSCAPE, PRC107, 034911 (2023)

Inclusive jet R_{AA} in Pb+Pb collisions at 5.02 TeV

Centrality dependence JETSCAPE, PRC107, 034911 (2023)

Charged particle R_{AA} in Pb+Pb collisions at 5.02 TeV

Charged particle R_{AA} in Pb+Pb collisions at 5.02 TeV

- Results without coherence effects

JETSERFE Y. Tachibana for the JETSCAPE Collaboration, the March Provide Action, September 23rd, 2024

f_{s}^{fix}, Q_{sw} dependence **JETSCAPE, PRC107, 034911 (2023)**

Coherence effects at high virtuality

Spectrum of induced gluons (Higher-Twist)

Kumar, Majumder, Shen, PRC101, 034908 (2020)

$$\frac{dN_{\rm g}}{dydl_{\rm \perp}^2} = \frac{\alpha_{\rm s}}{2\pi^2} P(y) \int \frac{d^2k_{\perp}}{(2\pi)^2} H(k_{\perp}, l_{\perp}, q^-, y)$$

$$\times \int d\delta\zeta^- d^2\zeta_{\perp} e^{-i\frac{k_{\perp}^2}{2q^-}\delta\zeta^- + i\vec{k}_{\perp}\cdot\vec{\zeta}_{\perp}} \langle p_B \mid A^{a+\alpha}(\delta\zeta^-, \vec{\zeta}_{\perp}) A^{a+\alpha}(\delta\zeta^-, \vec{\zeta}_{\perp})$$

$$H(k_{\perp}, l_{\perp}, q^{-}, y) = \int_{0}^{\tau^{-}} d\zeta^{-} \frac{2 - 2\cos\left\{\frac{(l_{\perp} - k_{\perp})^{2}\zeta^{-}}{2q^{-}y(1 - y)}\right\}}{(l_{\perp} - k_{\perp})^{4}}$$

