

Jet fragmentation and substructure correlations in pp and Pb-Pb

at $\sqrt{s_{NN}}$ = 5.02 TeV with ALICE

Bas Hofman

On behalf of the ALICE collaboration

Utrecht University

23 September 2024

Study of jet substructure correlations

Vacuum QCD:

Fragmentation: j_{T} vs. z

- Multidimensional test on QCD jet fragmentation
- Baseline for high mult. pp, p-Pb and Pb-Pb studies

QCD matter:

E_{T2}<E_T

Soft Drop: θ_{a} vs. z_{a}

Multidimensional measurement to disentangle jet survival bias from medium induced parton shower modifications

Cartoon from arXiv:1107.1964

Cartoon by Eric M. Metodiev

Bas Hofman

Hard Probes 2024

Study of jet substructure correlations

Vacuum QCD:

Fragmentation: j_{T} vs. z

- Multidimensional test on QCD jet fragmentation
- Baseline for high mult. pp, p-Pb and Pb-Pb studies

Also check <u>tomorrow's</u> session 1 poster by Jaehyeok Ryu who presents a new ALICE measurement of jet fragmentation!!

QCD matter:

E_{T2}<E_T

Soft Drop: θ_{a} vs. z_{a}

Multidimensional measurement to disentangle jet survival bias from medium induced parton shower modifications

Cartoon from arXiv:1107.1964

Cartoon by Eric M. Metodiev

Bas Hofman

Hard Probes 2024

Study of jet substructure correlations

Vacuum QCD:

Fragmentation: j_{T} vs. z

- Multidimensional test on QCD jet fragmentation
- Baseline for high mult. pp, p-Pb and Pb-Pb studies

Fragmentation

partons and a ...

Also check <u>tomorrow's</u> session 1 poster by Jaehyeok Ryu who presents a new ALICE measurement of jet fragmentation!!

Hadronization

QCD matter:

Soft Drop: θ_{a} vs. z_{a}

Multidimensional measurement to disentangle jet survival bias from medium induced parton shower modifications

Tomorrow at 9 Anjali Nambrath will also present the first ALICE measurements of EECs in pp and p-Pb!

Oartoon non arXiv. 1107.100-

Cartoon by Eric M. Metodiev

Bas Hofman

Hard Probes 2024

Jet substructure

Study of jet substructure correlations

New ALICE paper searching for scatterings off of quasi particles in QGP using groomed jets (SD + Dynamical Grooming) arXiv:2409.12837

Fragme

MultidimerBaseline f

QCD matter:

E_{T2}<E_T

Soft Drop: θ_{a} vs. z_{a}

Multidimensional measurement to disentangle jet survival bias from medium induced parton shower modifications

Cartoon from arXiv:1107.1964

Jet substructure

Study of jet substructure correlations

d Probes 2024

New ALICE paper searching for scatterings off of quasi particles in QGP using groomed jets (SD + Dynamical Grooming) arXiv:2409.12837

Fragme Multidimer

- Baseline f

<u>Soft Drop:</u> θ vs. z Models suggest E_{T1} asurement vival bias observable sensitive parton to Molière scattering but no evidence so far May be masked by yield suppression due to jet energy loss More work to do! Έ_{Τ2}<Ε_Τ.

QCD matter:

Cartoon from arXiv:1107.1964

Jet fragmentation: Observable

- Measure transverse momentum (j_T) of particles in jets differentially in jet momentum fraction of particles (z)

Jet fragmentation: Observable

 Measure transverse momentum (j_T) of particles in jets differentially in jet momentum fraction of particles (z)

- Naive expectation: high j_{T} at early stages, low j_{T} at late stages

Jet fragmentation: Observable

 Measure transverse momentum (j_T) of particles in jets differentially in jet momentum fraction of particles (z)

- Naive expectation: high j_{T} at early stages, low j_{T} at late stages

- Possibly disentangle hadronization and perturbative jet fragmentation

 $j_{\rm T}$ distributions compared to model predictions

Measured differentially for: Inclusive, low, mid and high z

 j_{T} distributions compared to model predictions

- Measured differentially for: Inclusive, low, mid and high z
- **PYTHIA over estimates** low z, high j_{T}

 j_T distributions compared to model predictions

- Measured differentially for: Inclusive, low, mid and high z
- PYTHIA over estimates low z, high j_T
- PYTHIA underestimates ~ low z, low j_T

10 < p_{T.iet} < 20 GeV/*c*

j_T distributions compared to model predictions

- Measured differentially for: Inclusive, low, mid and high z
- PYTHIA over estimates low z, high j_T
- PYTHIA underestimates low z, low j_T

PYTHIA: arXiv:1410.3012

j_T distributions compared to model predictions

- Measured differentially for: Inclusive, low, mid and high z
- PYTHIA over estimates low z, high j_T
- PYTHIA underestimates
 low z, low j_T
- High j_{T} suppressed for high p_{T}

PYTHIA: arXiv:1410.3012

Bas Hofman

 $\frac{1}{V_{jet}} \frac{1}{j_T} \frac{dN}{dj_T} (c^2/\text{GeV}^2)$

(Data)

Ratio (Moc

 j_{T} distributions compared to model predictions

- Measured differentially for: Inclusive, low, mid and high z
- **HERWIG** overestimates low $p_{T,iet}$, low z, high j_T

10 < p_{T.iet} < 20 GeV/*c*

j_T distributions compared to model predictions

- Measured differentially for: Inclusive, low, mid and high z
- HERWIG overestimates low p_{T,jet}, low *z,* high *j*_T
- HERWIG underestimates high z region

10 < p_{T.iet} < 20 GeV/*c*

 j_{T} distributions compared to model predictions $10 < p_{T,iet} < 20 \text{ GeV/}c$ $20 < p_{Tiet} < 40 \text{ GeV/}c$ ${1\over N_{
m jet}}{1\over j_{
m T}}{{dM}\over{dj_{
m T}}}\,(c^2/{
m GeV^2})$ (c^2/GeV^2) **ALICE Preliminary** ALICE Preliminary pp. $\sqrt{s} = 5.02 \text{ TeV}$ pp. Vs = 5.02 TeV Ch-particle iets Ch-particle jets Data Data 10^{3} 103 Anti- k_{T} , R = 0.4Anti- k_{T} , R = 0.4HERWIG7 HERWIG7 |n__|<0.5 n <0.5 dig i $\frac{1}{N_{\text{jet}}} \frac{1}{j_{\text{T}}}$ Measured differentially for: Inclusive, low, mid and high z $10 < p_{T,int}^{ch} < 20 \text{ GeV}/c$ $20 < p_{T,int}^{ch} < 40 \text{ GeV}/c$ **HERWIG** overestimates Ratio (Model/Data) Ratio (Model/Da low $p_{\text{T,iet}}$, low z, high j_{T} 1.8 **HERWIG HERWIG** 1.6 1.6 **HERWIG** underestimates high z region 10 j_{τ} (GeV/c) j_{\pm} (GeV/c) ALI-PREL-549529 ALI-PREL-549526

HERWIG: arXiv:0803.0883

Bas Hofman

Jet fragmentation: p_{τ} dependence

Ratio to 10-20 GeV/c

Inclusive *z*

Small dependence on $p_{T,jet}$, decreases with $p_{T,jet}$

Jet fragmentation: p_{T} dependence

Ratio to 10-20 GeV/c

Models predict $p_{T,jet}$ dependence in all *z* regions

Jet fragmentation: p_{τ} dependence

Ratio to 10-20 GeV/c

Models predict $p_{T,jet}$ dependence in all *z* regions

Jet fragmentation: p_{τ} dependence

Ratio to 10-20 GeV/c

Models predict $p_{T,jet}$ dependence in all *z* regions

Models qualitatively explain z dependence

Bas Hofman

Models qualitatively explain z dependence

Bas Hofman

Jet fragmentation: Ratio to inclusive

Models qualitatively explain z dependence

Bas Hofman

Bas Hofman

Jet narrowing:

Previous ALICE result: arXiv:2107.12984

Bas Hofman

Jet narrowing:

Decoherence?

Previous ALICE result: arXiv:2107.12984

Bas Hofman

Hard Probes 2024

8

Jet narrowing:

Decoherence?

quark / gluon fraction?

Bas Hofman

Bas Hofman

Jet narrowing:

Decoherence?

quark / gluon fraction?

Survival bias?

Unravel with multidimensional analysis!

Previous ALICE result: arXiv:2107.12984

Bas Hofman

Bas Hofman

Bas Hofman

Bas Hofman

Soft Drop: arXiv:1402.2657

Bas Hofman

Reasonable agreement of data with PYTHIA, POWHEG, HERWIG

JEWEL vacuum predicts too wide of jets in pp

Bas Hofman

POWHEG: arXiv:1002.2581

Reasonable agreement of data with PYTHIA, POWHEG, HERWIG

JEWEL vacuum predicts too wide of jets in pp

POWHEG: arXiv:1002.2581

Reasonable agreement of data with PYTHIA, POWHEG, HERWIG

Bas Hofman

Reasonable agreement of data with PYTHIA, POWHEG, HERWIG

Bas Hofman

Jewel predicts too wide of jets in Pb-Pb

Jewel predicts too wide of jets in Pb-Pb

Shape of z_g well described by Jewel

Bas Hofman

Shape of z_q well described by Jewel

Bas Hofman

Hard Probes 2024

Jets narrower in Pb-Pb compared to pp

Bas Hofman

Jets narrower in Pb-Pb compared to pp

Bas Hofman

Jets narrower in PbPb

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Survival bias independent of z_{q}

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Survival bias independent of z_g z_g independent of p_T : Unaffected by p_T migration

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Survival bias independent of z_g z_g independent of p_T : Unaffected by p_T migration

Any difference we see between z_g selections is independent of survival bias

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Survival bias independent of z_g z_g independent of p_T : Unaffected by p_T migration

Any difference we see between z_g selections is independent of survival bias

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Survival bias independent of z_g z_g independent of p_T : Unaffected by p_T migration

Any difference we see between z_g selections is independent of survival bias

We see significantly more jet narrowing in balanced jets

Jets narrower in PbPb

Jets being narrowed by QGP? <u>or</u> Wider jets less likely to survive QGP?

Survival bias independent of z_g z_g independent of p_T : Unaffected by p_T migration

Any difference we see between z_g selections is independent of survival bias

We see significantly more jet narrowing in balanced jets

Not due to p_T migration from jet e-loss

Substructure correlations: *z*_a

No significant modification in narrow jets within uncertainties

Bas Hofman

Substructure correlations: *z*_a

Wide jets show z_{q} modification

Bas Hofman

Substructure correlations: *z*_a

Wide jets show z_q modification

Wide jets more independent energy loss sources?

Bas Hofman

(c²/GeV²) GeV²) ALICE Preliminary pp, $\sqrt{s} = 5.02 \text{ TeV}$ Ch-particle jets ALICE Preliminary pp, vs = 5.02 TeV 103 - Data Ch-particle jets --- Data 103 Anti- $k_{\rm T}$, R = 0.4Anti- k_{T} , R = 0.4PYTHIA8 Monash 3 HERWIG7 |η_{iet}|<0.5 |n 3.5 3.5 Viet / 1 $\frac{1}{N_{\text{jet}}} \frac{1}{j_{\text{T}}}$ $\rightarrow -0 < z \le 1$ $---0 < z \le 1$ ---0 < z < 0.2---0.2 < z < 0.410 10 $10 < p_{\mathrm{T,iet}}^{\mathrm{ch}} < 20 \; \mathrm{GeV}/c$ - 0.4 < z ≤1 $10 < p_{T \, iot}^{ch} < 20 \, GeV/c$ 0.4 < z ≤1 </p> 10 Ratio (Model/Data) Ratio (Model/Data) 2 **PYTHIA HERWIG** 1.8 1.8 14 14 2 0 0 0 0 0 8 ⁹ 0.8 0.8 0.6 10^{-1} 1 10^{-1} j_{_} (GeV/c) ¹ j_T (GeV/c) ALI-PREL-549523 ALI-PREL-549526

<u>Jet fragmentation</u> j_{T} measured for various z

$\frac{\text{Jet fragmentation}}{j_{\text{T}} \text{ measured for various } z}$

Tension with models

Bas Hofman

<u>Jet fragmentation</u> $j_{\rm T}$ measured for various z

Tension with models

Also check <u>tomorrow's</u> session 1 poster by Jaehyeok Ryu who presents a new ALICE measurement of jet fragmentation!!

'j_⊤ (GeV/c)

0.6

ALI-PREL-549523

1 j_ (GeV/c)

$\frac{\text{Jet fragmentation}}{j_{\text{T}} \text{ measured for various } z}$

Tension with models

Also check <u>tomorrow's</u> session 1 poster by Jaehyeok Ryu who presents a new ALICE measurement of jet fragmentation!!

<u>Correlation of Soft Drop θ_{q} and z_{q} </u>

Stronger jet narrowing for balanced subjets Not due to p_{τ} migration from jet energy loss alone

$\frac{\text{Jet fragmentation}}{j_{\rm T}} \text{ measured for various } z$

Tension with models

Also check <u>tomorrow's</u> session 1 poster by Jaehyeok Ryu who presents a new ALICE measurement of jet fragmentation!!

<u>Correlation of Soft Drop θ_{q} and z_{q} </u>

Stronger jet narrowing for balanced subjets Not due to p_{τ} migration from jet energy loss alone

 $z_{\rm g}$ modification in wide jets

Bas Hofman