

Deciphering yield modification of hadron-triggered semi-inclusive recoil jets in heavy-ion collisions

Yang He (何杨) Shandong University 2024.09.24

Collaboration with Maowu Nie, Shanshan Cao, Rongrong Ma, Li Yi, Helen Caines

Based on: Phys. Lett. B 854 (2024) 138739

Outline

Delve into hadron-triggered semi-inclusive recoil jets (h+jet) with LBT model

Part 1. Introduction on h+jet measurements

Part 2. Explore "surface bias" of trigger particles

Part 3. Decipher the suppression of recoil jets

Part 4. Summary

Evidence for QGP in HIC: Jet quenching

Jet: a collimated spray of hadrons produced by energetic quark or gluon

Jet production in vacuum calculable with pQCD

Jet quenching phenomenon can be used to probe QGP properties

9/24

h+jet to study jet quenching

Jets recoiling from a high-p_T trigger hadron

Trigger: surface bias Recoil jet: larger path length than inclusive jets **Energy loss** Yield suppression

Acoplanarity

Trigger-jet azimuthal correlation

D Substructure modification

Yield dependence on jet R Other substructure observables...

2024/09/24

h+jet yield ratio (I_{AA})

Jets recoiling from a high-p_T trigger hadron

Recoil jet: larger path length than inclusive jets

Energy loss Yield suppression

Trigger-normalized yield

$$\frac{1}{N_{trig}^{AA}} \cdot \frac{d^3 N_{jet}^{AA}}{dp_{T,jet}^{ch} d\Delta \phi d\eta_{jet}} \bigg|_{p_{T,trig}} = \left(\frac{1}{\sigma^{AA \to h+X}} \cdot \frac{d^3 \sigma^{AA \to h+jet+X}}{dp_{T,jet}^{ch} d\Delta \phi d\eta_{jet}} \right) \bigg|_{p_{T,trig}}$$

Jet quenching observable

$$I_{AA} = \frac{Y^{A+A}}{Y^{p+p}}$$

h+jet yield ratio (I_{AA})

Experimental results

Plenty of I_{AA} measurements in different collision systems

What does I_{AA} > 1 mean?

Experimental results

Yang He (何杨), HP2024

Linear Boltzmann Transport (LBT) model

Cao, Luo, Qin, Wang, Phys. Rev. C 94 (2016) 1, 014909

The LBT model is developed for studying jet evolution inside the QGP

Medium modification of jet shower:

Medium-induced in-cone and out-of-cone splittings

Medium response:

Energy deposition: recoil parton Energy depletion: particle hole

Simulation procedure

*Note: parton level study

Explore "surface bias" of high p_T trigger

Are the triggers produced near the edge of the QGP?

*Note: parton level study

Explore "surface bias" of high p_T trigger

*Note: parton level study

Deviates from the center by about 2 fm
Still a large fraction of triggers lose energy

Yang He (何杨), HP2024

Quantify energy loss of trigger partons

*Note: parton level study

The fraction of triggers losing energy > 1 GeV/c Pb + Pb: 63% for the selection of 20 < $p_{T,trig}$ < 50 GeV/c Au + Au: 30% for the selection of 9 < $p_{T,trig}$ < 11 GeV/c

Energy Loss and path length

<x> decreases with increasing energy loss
Extremely large energy loss arises
 predominantly from fluctuations

How do quenched triggers impact I_{AA} ?

How do quenched triggers impact I_{AA} ?

Energy loss of trigger particles in A+A collisions results in them having originated from higher-Q² processes, and thus "true" baseline exceeds unity

Yang He (何杨), HP2024

Decipher I_{AA} > 1 observed in experiments

Pb+Pb

Au+Au

• The enhanced baseline indicates that $I_{AA} > 1$ could still signal jet quenching

Decipher I_{AA} > 1 observed in experiments

Pb+Pb

Au+Au

- The enhanced baseline indicates that I_{AA} > 1 could still signal jet quenching
- Rising trend of I_{AA}, especially as observed in the ALICE data, can be qualitatively reproduced by the LBT model

Exploration on trigger p_T dependence

The baseline gets closer to one with increasing trigger p_T Combined effects of flatter jet spectrum and smaller relative energy change of higher p_T trigger

smaller relative energy loss flatter spectra ratio closer to 1

Summary

- We explore the origin of I_{AA} larger than 1 at high p_T region with model study, and identify the trigger energy loss as the cause
- We find that "true" baseline for I_{AA} can well exceed 1 at high p_T for quenched trigger particle
- Due to the enhancement of "true" baseline, I_{AA} > 1 can still signal jet quenching
- I_{AA} provides strong constraints on model to describe both trigger and recoil jet energy loss

Phys. Lett. B 854 (2024) 138739

Back up

Outlook

Case using colored partons as trigger is explored. How about other particle species? Is the baseline for colorless gamma or Z boson $I_{AA} = 1$?

Trigger effect is studied at parton level. Will the same observation hold at hadron level?

Trigger energy loss effect on I_{AA} is explored. What's its effect on other observables?

Jet acoplanarity :

Medium deflects jet to large angle? (medium effect) Harder jets are more difficult to deflect? (trigger effect)

Jet substructure:

Interaction with medium broadens the jet? (medium effect) Harder jets are more collimated? (trigger effect) How do they interplay?

Trigger p_T and path length

Energy loss and production vertex

<X> distributions

PYTHIA p_T distribution

- Integral(bin_i+1, 100)/Integral(bin,100)
- fit the three pt bins: bin_i-1, bin_i, bin_i+1 with a power-law distribution to get the slope

- Initial pT spectrum gets flatter
- Higher-pT triggers get more contribution from even higher initial pT partons whose lose more energy