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Entropy and correlations inside jets

Most jet quenching observables come from projections of the final particle distribution inside jets

do dN _
oc/ﬂdﬂé(o—a)

odo

It would be 1nteresting to have observables which are (directly) sensitive to correlations present 1n the final state

Examples:
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Correlators of Ligh-Ray Operators (inclusive) Fourier harmonics of intra-jet particle distribution
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The 1s another example of such an observable

333323 ® The entropy encapsulates information about multipoint
333333 . .

e correlators (exclusive distributions)

SOLID LIQUID /\

® C(lassically, it “measures” the number of available dofs

Entropy (S)

/ ® For mixed states, as 1n jets, other non-equivalent measures
. can be introduced to probe the structure of the state
/\ ® Entropy 1s the canonical entanglement measure
Entanglement
Confinement Proton Structure

[Klebanov, Kutasov, Murugan, 0709.2140]
[Kharzeev, Levin, 1702.03489]
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Jet entropy 1n vacuum
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One can define the jet entropy from the associated jet density matrix Ppure = ‘¢> <¢|

Creates n particles inside the jet
Pn ({pz i1, 1D§ ;nzl) f

Feynman-Vernon functional incorporating the
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However, 1t 1s natural to consider the entropy associated to the hardest (collinear) partons inside the jet
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unless n = m, p; = p; and a; = a, for all 1,

[Breuer, Petruccione; Nagy, Soper; Neill, Waalew1jn]
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Jet entropy

One way to define the hardest constituents 1s to work only with subjets which have energy fractions and angles larger
than cutoffs zc, B , then one can write

dP dP
S:;/dﬂndﬂn log i :En:sn

At leading logarithmic accuracy and in a physical gauge, we can compute the entropy recursively

S = —Trplogp

asCa P(2)

e 2GR, (zpe, 0)dP,, (1 — 2)p:, 0)
2 0
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Jet entropy

[Neill, Waalew1yn, 1811.01021]
Using this approximation, the entropy can be directly computed LL accuracy and 1s satisfies the implicit equation

S = —log (6_A(R’RC)> e~ (B Re) >

“Linear” evolution due A(R.O
to cascading individually / ae 2B LSE) + S((1 — 2)E)}
z.,0

on each leg (multiplicity)

” : - . 4 2
Non-linear” piece coming _I_/ &e—A(RaQ) (A(R7 (9) _ lOg i 575 QOéAZ)
2.0 0-E

from the logarithm 2 (1 _ Z)

)

)

At DL accuracy and for YMs theory, a closed form solution can be found:

ER (2 2005 N E R
(o) = (@@ D) + 205 51 (20 1) w =2 /20N rog 2 pog

Intra-jet multiplicity
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Entropy evolution 1n the medium
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Single parton evolution in the medium 2305.10476, JB, Blaizot, Mehtar-Tani Q’ NBaEi?nghlgb?r\égS
For a single parton, the density matrix satisfies a sismple evolution equation p=tr,(plA]) = <|¢ At (Y a(t)] >A

p(t) p(t — 6t)
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Single parton evolution in the medium 2305.10476, JB, Blaizot, Mehtar-Tani

Initial condition Asymptotically, one has that
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Single parton evolution in the medium

Momentum Broadening

2305.10476, JB, Blaizot, Mehtar-Tani
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Asymptotically, one has that
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S ~ log(k®)(r?) ~ log Phase Space
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Diagonalization Asymptotically, one has that
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Entropy beyond the single parton limit

Only one Quark Quark and Gluon
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® Entropy growth determined by momentum broadening, with evolution parameter agreeing with analytic estimate

® Entropy evolution 1s dominated by gluon radiation compared to medium effects or momentum broadening
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In matter, the jet entropy will be modified by different types of effects

Energy loss v

Induced radiation

n —m, Phase space Can not be resumed using jet calculus rules;
modifications Power corrections to vacuum result (sub-leading)
Can be incorporated directly;
m current description insufficient for modeling
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J et entr()py in the QGP f]‘()m pQCD 24xx.xxxxx, JB, Blaizot, Mehtar-Tani

we consider a simple picture based on the quenching weights approximation, where energy is lost
incoherently

n —1m

¢
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J et entrOpy in the QGP fl‘()m pQCD 24xx.xxxxx, JB, Blaizot, Mehtar-Tani

It follows that the entropy takes now the form

So = A(R, R.)e A Ee) >

e oneney of [ qem 580 (QEENSHEE) + (Q((1 - 2)E)Sal(1 - 2)E)

)

“Non-linear” _
dependence on energy T / ae” HULY) <Q(ZE)><Q((1 - Z)E)> A(R, ‘9) — log
loss of both legs 250

where we introduced the average quenching weight factor (Q(E)) = Z / Q"™dp,
n Y1ln

® In the opposite limit of fully coherent energy loss (1.e. jet = 1 charge), one directly finds S=S5 Q

16
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Natural competition effect between two “mechanisms”: —
——
® More branchings lead to entropy increase due to o~ .,
larger phase space as in % 2
= vacuum O
g or coherent energy loss o
>
More branchings lead to larger number of g =
® sources which increase the quenching and % =
reduce the entropy 8 =
Asymptotically in the evolution variable, the running can be oec

absorbed 1n a redefinition of the coupling

quark gluon plasma

R ['dz

This is a manifestation of the filtering effect of the plasma,

which results in jet collimation
17
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Entropy

24xx.xxxxx, JB, Blaizot, Mehtar-Tani
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At small quenching

more sources = larger entropy

At large quenching
more sources = smaller entropy



Jet entropy in the QGP from pQCD
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[prelim., JB, J.G. Milhano, M. Ploskon, Joao M. Silva’

— Vacuum JEWEL

— Medium

R=1,p; > 800GeV, z. = 0.01
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Conclusion

® Jet entropy evolution in the medium allows to explore the number of effective hard
sources 1n the jet and the interplay with energy loss.

® Since jets are naturally associated with mixed states, one can generalized this
discussion to other entanglement measures: mutual information, negativity, ...

® This jet entropy corresponds to the entanglement entropy between the hard modes and
the soft and medium modes. Other relative entropies can be computed within just the
hard sector !
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