

Exploring light flavor hadronization in hard and soft events with event shape classifiers in small collision systems at the LHC with ALICE

Feng Fan, for the ALICE Collaboration Central China Normal University

sQGP in small collision systems?

✓ Strangeness enhancement in high-multiplicity (HM) small collisions systems

sQGP in small collision systems?

✓ Strangeness enhancement in high-multiplicity (HM) small collisions systems ✓ Radial flow signatures emerge with increasing event multiplicity

sQGP in small collision systems?

✓ Strangeness enhancement in high-multiplicity (HM) small collisions systems ✓ Radial flow signatures emerge with increasing event multiplicity

Selection bias

 \checkmark Selection bias towards hard pp collisions \rightarrow selecting multiplicity classes and measuring particle spectra in the same pseudorapidity

- ✓ We need new observables to isolate events with specific topologic characteristics
 - Transverse spherocity $S_{\Omega}^{p_{T}=1}$
 - Relative transverse activity $R_{\rm T}$
 - Charged-particle flattenicity 1ρ

The ALICE detector in Run 1 and Run 2

111111111

TPC ($|\eta| < 0.9$): tracking, PID (d*E*/d*x*)

TOF ($|\eta| < 0.9$): PID (particle velocity)

ITS ($|\eta| < 0.9$): tracking, vertexing, pile up rejection, SPD tracklets estimator

Transverse spherocity $S_{O}^{p_{T}=1}$ measurement

Transverse spherocity $S_{\Omega}^{p_{\rm T}=1}$

Event-by-event selection quantified the topology in the azimuthal plane

$$S_{O}^{p_{T}=1} = \frac{\pi^{2}}{4} \min_{\hat{n}} \left(\frac{\sum_{i} |\hat{p}_{T,i} \times \hat{n}|}{N_{\text{trks}}} \right)^{2}$$

- $\hat{p}_{T,i}$ is the transverse momentum unit vector for a charged particle
- $N_{\rm trks}$ is the number of charged particles in a given event
- \hat{n} is the unit vector that minimizes $S_{\Omega}^{p_{\rm T}=1}$
- ✓ $S_{O}^{p_{T}=1} \rightarrow 0$: jet-like event, particle production driven by hard physics
- ✓ $S_{O}^{p_{T}=1} \rightarrow 1$: isotropic event, particle production driven by soft physics

Feng Fan - HP 2024

Transverse spherocity $S_{O}^{p_{T}=1}$

Event-by-event selection quantified the topology in the azimuthal plane

$$S_{O}^{p_{T}=1} = \frac{\pi^{2}}{4} \min_{\hat{n}} \left(\frac{\sum_{i} |\hat{p}_{T,i} \times \hat{n}|}{N_{\text{trks}}} \right)^{2}$$

- $\hat{p}_{T,i}$ is the transverse momentum unit vector for a charged particle
- $N_{\rm trks}$ is the number of charged particles in a given event
- \hat{n} is the unit vector that minimizes $S_{\Omega}^{p_{\rm T}=1}$
- ✓ $S_{O}^{p_{T}=1} \rightarrow 0$: jet-like event, particle production driven by hard physics
- ✓ $S_{O}^{p_{T}=1} \rightarrow 1$: isotropic event, particle production driven by soft physics

Transverse spherocity $S_{O}^{p_{T}=1}$

Event-by-event selection quantified the topology in the azimuthal plane

$$S_{O}^{p_{T}=1} = \frac{\pi^{2}}{4} \min_{\hat{n}} \left(\frac{\sum_{i} |\hat{p}_{T,i} \times \hat{n}|}{N_{\text{trks}}} \right)^{2}$$

- $\hat{p}_{T,i}$ is the transverse momentum unit vector for a charged particle
- $N_{\rm trks}$ is the number of charged particles in a given event
- \hat{n} is the unit vector that minimizes $S_{\Omega}^{p_{\rm T}=1}$
- ✓ $S_{O}^{p_{T}=1} \rightarrow 0$: jet-like event, particle production driven by hard physics
- ✓ $S_{O}^{p_{T}=1} \rightarrow 1$: isotropic event, particle production driven by soft physics

-differential average transverse momentum $\langle p_{\rm T} \rangle$

-differential average transverse momentum $\langle p_{\rm T} \rangle$

5

Integrated yield as a function of $S_{\Omega}^{p_{\rm T}=1}$

- Strangeness enhancement in isotropic events
- Strangeness-based ordering
- Proton remains mostly unaffected (S=0)

EXALICE, JHEP 05 (2024) 184 ALI-PUB-574667

Integrated yield as a function of $S_{\Omega}^{p_{\rm T}=1}$

- Strangeness enhancement in isotropic events
- Strangeness-based ordering
- Proton remains mostly unaffected (S=0)

PYTHIA 8.2 predictions

- Ropes tune qualitatively reproduce the trends, but not the strangeness ordering
- Monash tune cannot capture the trends

EXALICE, JHEP 05 (2024) 184 ALI-PUB-574667

Integrated yield as a function of $S_{0}^{p_{T}=1}$

- Strangeness enhancement in isotropic events
- Strangeness-based ordering
- Proton remains mostly unaffected (S=0)

PYTHIA 8.2 predictions

- Ropes tune qualitatively reproduce the trends, but not the strangeness ordering
- Monash tune cannot capture the trends
- EPOS-LHC qualitatively reproduced the trends, but not the strangeness ordering
- Herwig 7.2 cannot capture the trends

ALI-PUB-574672 📚 ALICE, JHEP 05 (2024) 184

Relative transverse activity $R_{\rm T}$ measurement

Relative transverse activity $R_{\rm T}$

Event-by-event selection based on the underlying-event (UE) activity in the midrapidity interval (UE refers to everything that does not come from the main hard partonic scattering)

- $R_{\rm T} = N_{\rm ch}^{\rm TS} / \langle N_{\rm ch}^{\rm TS} \rangle$
- $N_{\rm ch}^{\rm TS}$ is the charged-particle multiplicity in the transverse region (TS)
- $\langle N_{ch}^{TS} \rangle$ is the average multiplicity over all events in TS

Feng Fan - HP 2024

might be attributed to the initial- and final-state radiations

$p_{\rm T}$ -spectra as a function of $R_{\rm T}$

➢ ALICE, JHEP 01 (2024) 056

Toward and Away regions:

- For $p_{\rm T}$ < 4 GeV/c, the $p_{\rm T}$ spectra is $R_{\rm T}$ dependent
- For $p_{\rm T}$ > 4 GeV/c, the spectral shape is almost $R_{\rm T}$ independent

$p_{\rm T}$ -spectra as a function of $R_{\rm T}$

▲ ALICE, JHEP 01 (2024) 056

Toward and Away regions:

- For $p_{\rm T}$ < 4 GeV/c, the $p_{\rm T}$ spectra is $R_{\rm T}$ dependent
- For $p_{\rm T}$ > 4 GeV/*c*, the spectral shape is almost $R_{\rm T}$ independent

Transverse region:

- A $p_{\rm T}$ -hardening with increasing $R_{\rm T}$, due to autocorrelation effects

Phys. Rev. D 104 (2021) 016017

$p_{\rm T}$ -spectra as a function of $R_{\rm T}$

► ALICE, JHEP 01 (2024) 056

Toward and Away regions:

- For $p_{\rm T}$ < 4 GeV/*c*, the $p_{\rm T}$ spectra is $R_{\rm T}$ dependent
- For $p_{\rm T}$ > 4 GeV/*c*, the spectral shape is almost $R_{\rm T}$ independent

Transverse region:

- A $p_{\rm T}$ -hardening with increasing $R_{\rm T}$, due to autocorrelation effects
 - Phys. Rev. D 104 (2021) 016017

MC predictions:

- PYTHIA 8.2 describes data better than EPOS LHC

$\langle p_{\rm T} \rangle$ as a function of $R_{\rm T}$

ALI-PUB-567949

Low $R_{\rm T}$: the $\langle p_{\rm T} \rangle$ is independent of collision system for $R_{\rm T} \approx 0$ as jet dominates at low $R_{\rm T}$

▲ ALICE, JHEP 01 (2024) 056

$\langle p_{\rm T} \rangle$ as a function of $R_{\rm T}$

High $R_{\rm T}$:

- Toward and Away: the $\langle p_{\rm T} \rangle$ is nearly flat for $R_{\rm T} > 1$, and exhibits a system size ordering

EXALICE, JHEP 01 (2024) 056

Low $R_{\rm T}$: the $\langle p_{\rm T} \rangle$ is independent of collision system for $R_{\rm T} \approx 0$ as jet dominates at low $R_{\rm T}$

$\langle p_{\rm T} \rangle$ as a function of $R_{\rm T}$

ALI-PUB-567949

Low $R_{\rm T}$: the $\langle p_{\rm T} \rangle$ is independent of collision system for $R_{\rm T} \approx 0$ as jet dominates at low $R_{\rm T}$ High $R_{\rm T}$:

- Transverse: the $\langle p_{\rm T} \rangle$ is increasing with increasing $R_{\rm T}$

▲ ALICE, JHEP 01 (2024) 056

- Toward and Away: the $\langle p_{\rm T} \rangle$ is nearly flat for $R_{\rm T} > 1$, and exhibits a system size ordering

Charged-particle flattenicity 1- ρ measurement

Charged-particle flattenicity 1-p

Event-by-event selection based on the relative standard deviation of the multiplicity measured in the 64 V0 channels

$$\rho = \frac{\sqrt{\sum_{i=1}^{64} \left(N_{\rm ch}^{\rm cell,i} - \langle N_{\rm ch}^{\rm cell} \rangle \right) / N_{\rm cell}^2}}{\langle N_{\rm ch}^{\rm cell} \rangle}$$

- $N_{\rm ch}^{\rm cell,i}$ is the particle multiplicity in the *i*-th cell
- $\langle N_{\rm ch}^{\rm cell} \rangle$ is the average multiplicity over the all 64 cells per event

- ✓ large flattenicity $1 \rho \rightarrow 0$: jet-like events, with low $N_{\rm mpi}$
- ✓ small flattenicity $1 \rho \rightarrow 1$: isotropic events, with high $N_{\rm mpi}$

10

$\mathcal{Q}_{\mathrm{pp}}$ as a function of p_{T}

Intermediate $p_{\rm T}$: a bump structure develops with increasing multiplicity -----

Feng Fan - HP 2024

$\mathcal{Q}_{\mathrm{pp}}$ as a function of p_{T}

- Intermediate $p_{\rm T}$: a bump structure develops with increasing multiplicity -
- High $p_{\rm T}$: $Q_{\rm pp}$ approaches unity

Feng Fan - HP 2024

- Intermediate $p_{\rm T}$: a bump structure develops with increasing multiplicity
- High $p_{\rm T}$: $Q_{\rm pp}$ approaches unity

Q_{pp} : data vs MC models

- PYTHIA 8 w/o CR: a nearly flat Q_{pp} as a function of $p_{\rm T}$
- PYTHIA 8 w CR: overall the best description of data
- —

EPOS LHC: overestimates and underestimates Q_{pp} at intermediate and high p_{T} values, respectively

Particle ratios: flattenicity vs multiplicity

The particle ratios as a function of flattenicity exhibit a steeper increase with multiplicity than those as a function of VOM

Feng Fan - HP 2024

➢ arXiv:2407.20037

Flattenicity (1-p) only: flattenicity selection based on unbiased events (0-100% VOM)

0-1% VOM:

flattenicity selection based on high-multiplicity events (0-1% VOM)

Summary

- 1. Transverse spherocity $S_{\Omega}^{p_{T}=1}$
 - $S_{O}^{p_{T}=1}$ can be used to select strangeness enhanced/suppressed events
 - Strangeness enhancement in high-multiplicity pp collisions is a feature of the isotropic events -
- 2. Relative transverse activity $R_{\rm T}$
 - $R_{\rm T} > 3$ emerges bias towards multi-jet topologies
 - $p_{\rm T}$ -spectra are hardening with increasing $R_{\rm T}$ due to autocorrelation effects
- 3. Charged particle flattenicity 1ρ can be used to select pp collisions with large number of MPI and small bias than the VOM multiplicity estimator

Summary

- 1. Transverse spherocity $S_{O}^{p_{T}=1}$
 - $S_{O}^{p_{T}=1}$ can be used to select strangeness enhanced/suppressed events
 - Strangeness enhancement in high-multiplicity pp collisions is a feature of the isotropic events
- 2. Relative transverse activity $R_{\rm T}$
 - $R_{\rm T} > 3$ emerges bias towards multi-jet topologies
 - $p_{\rm T}$ -spectra are hardening with increasing $R_{\rm T}$ due to autocorrelation effects
- 3. Charged particle flattenicity 1ρ can be used to select pp collisions with large number of MPI and small bias than the VOM multiplicity estimator

Outlook: measurement of ϕ meson production in and out of jets for pp collisions at $\sqrt{s} = 13.6$ TeV is ongoing

