

Investigating initial states using $[p_T$ and $v_n - [p_T]$ c

AGH

Tomasz Bold* - on behalf of the ATLAS Collaboration, *AGH University of Krakow, Poland Hard Probes 2024, Nagasaki, Japan September, 2024

Investigating initial state of heavy-ion collisions

using $[p_T]$ fluctuations

and $v_n - [p_T]$ correlations in ATLAS

- ATLAS measured $v_n [p_T]$ correlation coefficient ρ in Pb+Pb (and p+Pb)
- The measurement of ρ in Xe+Xe relative to Pb+Pb indicated difference between them attributed to the shape of Xe nuclei
- The $[p_T]$ & c_k also exhibit an interesting evolution: investigated in followup measurement

Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation

PHYSICAL REVIEW C 107, 054910 (2023) / arXiv:2205.00039

Precise tool for initial stage imaging - sensitive to correlation between energy density & initial state deformation - not so much on details of QGP evolution (e.g. Giacalone et al Phys. Rev. C 103, 024909 (2021)

Measurement details

Various methods to combined information from sub-events: standard - all particles used, 2 sub-events only A & C 3 sub-events A & C for $v_n\{2\}$ and B for c_k

$$\frac{-}{c_k}, \quad \operatorname{cov}_n = \langle \langle v_n^2 \delta p_{\mathrm{T}} \rangle \rangle,$$

$$c_k = \langle \langle \delta p_T \delta p_T \rangle \rangle.$$

Where: $\delta p_T = p_T - \langle [p_T] \rangle$

ρ_2 in Pb+Pb, Xe+Xe and its ratio

- Significant variation with centrality
- Different between the Xe+Xe and Pb+Pb, yet the ratio almost constant
- The ratio sensitive to initial projectiles shape
 - a very good description in simulation (Trento) allow $a \neq b \neq c$

PHYSICAL REVIEW C 107, 054910 (2023)

a very good description in simulation (Trento) allowed data to discern Xe nuclei shape - it is strongly triaxial:

The Ultra Central events (UCC)

- ullet

PHYSICAL REVIEW C 107, 054910 (2023)

• In the UCC, $b \to 0$, (about 1.5% most central) the trends of ρ but also Var, c_k change behaviour • The $b \rightarrow 0$ reduces the initial geometry fluctuations and thus reduced variance of flow harmonics Trend in c_k (measure of momentum fluc.) also change, reduced fluctuations - investigated further *b* - impact parameter

Disentangling sources of momentum fluctuations in Xe+Xe and Pb+Pb collisions with the ATLAS detector

- Evolution of $[p_T]$ distribution moments with centrality (N_{ch} scaling)
- A close look at the evolution of moments of $[p_T]$ in UCC
- Pb+Pb & Xe+Xe comparison
- Comparison to models aiming at description of $[p_T]$ fluctuation

HION-2021-20 / arXiv:2407.06413

- Two contributions to $[p_T]$ fluctuations
 - Geometric fluctuation radial flow
 - Intrinsic fluctuations quantum (initial state) + thermal (evolution)
- By constraining size fluctuations going to UCC access the magnitude of intrinsic part

Motivation

R. Samanta et al Phys. Rev. C 108, 024908

Measured quantities

- An n-particle transverse momentum correlator defined:
- Moments: central $\langle [p_T] \rangle$, dimensionless scaled variance k_2 , scaled skewness k_3 , intensive skewness Γ
- Averaged over activity class: N_{ch}^{rec} - in number of reconstructed charged particles in ATLAS ID ΣE_T^{FCal} - energy in ATLAS Forward calorimeter (default centrality estimator)
 - Estimators scaled for comparison by values in the 0-1% centrality bin, or to the value at 5%

$$c_n = \frac{\sum_{i_1 \neq \dots \neq i_n} w_{i_1} \dots w_{i_n} (p_{\mathrm{T},i_1} - \langle [p_{\mathrm{T}}] \rangle) \dots (p_{\mathrm{T},i_n} - \langle [p_{\mathrm{T}}] \rangle}{\sum_{i_1 \neq \dots \neq i_n} w_{i_1} \dots w_{i_n}}$$

Where: $[p_T]$ - mean momentum of particles in an event $\langle [p_T] \rangle$ - mean over a class of events

 $k_{2} = \frac{\langle c_{2} \rangle}{\langle [p_{T}] \rangle^{2}}, \quad k_{3} = \frac{\langle c_{3} \rangle}{\langle [p_{T}] \rangle^{3}}, \quad \Gamma = \frac{\langle c_{3} \rangle \langle [p_{T}] \rangle}{\langle c_{2} \rangle^{2}}.$

Predictions

- Independent sources picture k_n -should evolve with multiplicity following $k_n \propto N^{n-1}$
- In UCC the $[p_T]$ is predicted to rise with centrality 1% -> 0.1% ... and the sound speed in QGP c_s^2 can be obtained from that F.G. Gardim et al Phys.Lett.B 809 (2020) 135749
- The origin of $[p_T]$ fluctuations proposed to be correlated with b and N_{ch} (2D Gaussian model) captures evolution of moments in mid-central & UCC R. Samanta et al Phys. Rev. C 109 (2024) L051902
- Within the 2D Gaussian model lower limit on b leads to skewed $[p_T]$ in UCC R. Samanta et al Phys. Rev. C 108, 024908

Moments N^{rec}_{ch} dependence

- Shown are $P([p_T], N_{ch}), \langle [p_T] \rangle$ and moments evolution with multiplicity
- The $\langle [p_T] \rangle$: a turn on of radial flow in peripheral collisions plateau-like in mid-central a rapid rise in UCC
- The k_2 and k_3 : power law driven decrease with centrality, additional component in UCC
- Xe+Xe and Pb+Pb exhibit similar features

Power-law evolution of moments

- The rise (consistent with earlier observations) in peripheral coll. attributed to the onset of thermalisation
- The scaling (const in N_{ch}) holds for broad range of N_{ch}^{rec} for Pb+Pb (not for Xe+Xe) and both k_2
- The drop in UCC due to $b \rightarrow 0$ (reducing initial ulletgeometric & leaving mostly intrinsic fluctuations)
- Skewness evolution qualitatively similar to k_2 in peripheral collisions
- The rise around the knee also due to truncation of bdistribution (k_3 becomes non monotonic)

F.G. Gargim et al Phys.Lett.B 809 (2020) 135749

A very clear rise by about 2% of $\langle [p_T] \rangle$ in 1% central collisions

Quantitative comparisons

A phenomenological \bullet model (2D Gaussian model) of fluctuations predicts sudden drop of fluctuations magnitude in 1% central

 $[p_T]$ in 1% central collisions

A very good agreement with predictions

of fluctuations magnitude in 1% central

Higher order moments

- Third moment exhibits a nonmonotonic behaviour
- Well described by the 2D gaussian model
- The two components of fluctuations needed and describe the data satisfactory

Direct correlation measurement

- Restricted impact parameter using ΣE_T^{FCal} estimator: $\langle [p_T] \rangle$ measured in slices of N_{ch}^{rec}
- Prediction: the slope of the correlation proportional to speed of sound c_{s}^{2} in QGP ullet
- lacksquareexcellent agreement for Pb+Pb and Xe+Xe, unlike the HIJING

Predictions by MUSIC (initial entropy destr. from TRENTO, $T_{eff} \approx 222 \ MeV$ and $c_s^2 \approx 0.23$) model are in

Relation to hard probes programme

- The UCC Pb-Pb events provide well controlled environment: fixed transverse area, fluctuating T & s (accessible experimentally via $[p_T]$ & $[N_{ch}]$)
 - Could be used to study jet-quenching & overall hard particles spectra modification as a function of T & s
 - A high sensitivity of $v_n [p_T]$ to the initial conditions calls of the study of this correlation in the presence of hard probes
- Pursuing such ideas would greatly benefit from theory input

Summary

- ATLAS explored measurement of $v_n [p_T]$ correlations:
 - measured precisely the Xe nucleus shape (triaxial)
 - and hinted interesting behaviour in the UCC
- and $[p_T]$ fluctuations:
 - variance and skewness follow independent source scenario in wide centrality range (driven by geometry)
 - "geometric" and "intrinsic" contributions evolutions in N_{ch} are different
 - departure from independent-source trend in UCC allow to disentangle them (also in non UCC)
 - Increase of $\langle [p_T] \rangle$ with N_{ch} captured by simulations allow two extract speed of sound in QGP Both of these measurements indicate that Pb+Pb Ultra Central Collisions are excellent setting to
- Both of these measurements indicate that F study hard-probes - ideas are welcome