Exploring jet quenching effects via di-hadron correlations in 13 TeV proton-proton collisions with ALICE

Maxim Virta¹ on behalf of ALICE

1. University of Jyvaskyla, Finland

Motive 1: *Can we find signals of jet quenching in high-multiplicity pp?*

Motive 2: Are the assumptions in current flow extraction methods valid?

Motive 1: *Can we find signals of jet quenching in high-multiplicity pp?*

Motive 2: Are the assumptions in current flow extraction methods valid?

M1 Search for jet quenching effects in high-multiplicity pp collisions

What about pp collisions at $\sqrt{s} = 13$ TeV? **Study multiplicity dependence**

hadron-hadron correlations? (This analysis)

hadron-jet correlations? (di-jets: *JHEP* 05 (2024) 229)

intra-jet correlations? (Intra-jet: arXiv:2311.13322)

Double peak structure in $\Delta\eta$ is from Shock Wave?

- Also seen in AMPT String melting model
- Double hump peaks around $\Delta \eta \approx 2$ from γ -jets and is also sensitive to EoS (x.N. Wang et al. *Phys. Lett. B* 777 (2018) 86-90)

See Yeonju's talk on Thursday morning

- Is the origin the same?
- Can be seen in HM pp collisions?

Broadening of jets in $\ensuremath{\text{Pb}}-\ensuremath{\text{Pb}}$ Collisions

Broadening of the jet fragmentation peak in various kinematic regions observed in HI collisions
Abnormal and wider in Δη direction than Δφ

• The origins are still being debated

1 $\Delta\eta$ can be measured (weak η -dependence) and can be used as a proxy for away-side. **2** $\Delta\eta$ and $\Delta\varphi$ symmetry in jets.

 $\Delta \varphi$ width can't be measured because of the existence of the flow.

Analysis strategy for near-side peak width and jet fragmentation

NEW! ALICE, arXiv:2409.04501

- Multiplicity dependence decreases for higher p_T and higher multiplicity
- V0M results have broader jets and weaker multiplicity dependence across almost all p_T-bins
- Clear ordering in the magnitude → narrower peaks towards higher p_T

Maxim Virta, maxim.virta@cern.ch

NEW! ALICE, arXiv:2409.04501

 Evaluate jet fragmentation yield:

$$Y^{\mathrm{frag}} = \int_{|\Delta\eta|} rac{1}{N_{\mathrm{trig}}} rac{\mathrm{d}N}{\mathrm{d}\Delta\eta} \mathrm{d}\Delta\eta.$$

- Largest jet yields for 1 < p_{T,assoc} < 2 GeV/c bins
- Smallest yields for symmetric trig-assoc bins
- *F* = 1.3 (∼ 2.2) for forward rapidity (midrapidity) in low-*p*_T

Maxim Virta, maxim.virta@cern.ch

Model	Physics	Observations	Refs
(1) PYTHIA8 Monash	Jets only (2013)	No soft partonic or	P. Skands et
		hadronic interactions	al., Eur. Phys.
			J. C 74 3024
(2) PYTHIA8 4C	Jets only (2011)	No soft partonic or	R. Corke & T.
		hadronic interactions	Sjöstrand,
			JHEP 03 032
(3) PYTHIA8 String Shoving	Jets and Flow	Uses strings to	C. Bierlich <i>et</i>
		simulate soft	al. PLB 779
		interactions	58-63
(4) EPOS LHC	Jets and Flow	Uses core	K. Werner et.
		(hydrodynamic	al Phys. Rev. C
		expansion) and	92 034906
		corona (hadrons	
		from string decays)	
(5) AMPT String Melting	Jets and Flow	Uses soft and hard	ZW. Lin <i>et al.</i>
		partonic and	Phys. Rev. C
		hadronic interactions	72 064901

- Separation between core and corona with density
- Core undergoes collective hadronisation

- Includes a repulsive force between colour strings
- Can predict some long-range correlations

Model comparions: Near-side width $\sigma_{\Delta\eta}$

Too many $p_{\rm T}$ -intervals? Let's zoom in!

Model comparions: Near-side width $\sigma_{\Delta\eta}$, low- $p_{\rm T}$

NEW! ALICE, arXiv:2409.04501

- Models overestimate the data in the lower-*p*_T
- Overestimation stronger in low multiplicity
- Trend is captured by most models
- AMPT scaled with 0.6

Model comparions: Near-side width $\sigma_{\Delta\eta}$, high- $p_{\rm T}$

• Models can estimate the data better in higher- $p_{\rm T}$

- The multiplicity dependence vanishes
- AMPT scaled with 0.6

NEW! ALICE, arXiv:2409.04501

Motive 1:

- No broadening of jet peak found
- $\rightarrow\,$ no signal of jet quenching
- Measured narrowing may result from kinematic biases
- Disentangle QCD biases to search for QGP effects in small systems
 - Core vs. corona contributions (Y. Kanakubo et al., *Phys. Rev. C* 106, 054908)
 - Refining both QCD and initial condition models (eg. MC-EKRT Kuha et al., arXiv:2406.17592)

Motive 1:

- No broadening of jet peak found
- ightarrow no signal of jet quenching
- Measured narrowing may result from kinematic biases
- Disentangle QCD biases to search for QGP effects in small systems
 - Core vs. corona contributions (Y. Kanakubo et al., *Phys. Rev. C* 106, 054908)
 - Refining both QCD and initial condition models (eg. MC-EKRT Kuha et al., arXiv:2406.17592)

Motive 2:

- Clear distinction with Midrapidity Multiplicity Estimator
- $\rightarrow\,$ need to use forward estimators
- Flow measurements need to account for shape modifications in low-*p*_T
- May differ for different kinematic selections
- $\rightarrow\,$ effects need to be quantified separately

Motive 1:

- No broadening of jet peak found
- $\rightarrow\,$ no signal of jet quenching
- Measured narrowing may result from kinematic biases
- Disentangle QCD biases to search for QGP effects in small systems
 - Core vs. corona contributions (Y. Kanakubo et al., *Phys. Rev. C* 106, 054908)
 - Refining both QCD and initial condition models (eg. MC-EKRT Kuha et al., arXiv:2406.17592)

Motive 2:

- Clear distinction with Midrapidity Multiplicity Estimator
- \rightarrow need to use forward estimators
- Flow measurements need to account for shape modifications in low-*p*_T
- May differ for different kinematic selections
- ightarrow effects need to be quantified separately

Run 3 analysis has been started!

Probe for the low multiplicity limit of flow and correlations Reduce the statistical and systematical uncertainties Thank you! Questions?

BACKUP

Model comparions: jet fragmentation yields γ^{frag} , low- p_{T}

Maxim Virta, maxim.virta@cern(\hat{N}_{ch}^h) ($|\eta| < 1.0$, $p_T > 0.2 \text{ GeV/c}$)

^{23.} September, Hard Probes 2024

Model comparions: jet fragmentation yields γ^{frag} , high- p_{T}

- Model description improves in higher-*p*_T
- Slight overestimation but trend is better captured
- AMPT scaled with 0.5

Maxim Virta, maxim.virta@cern{ $ab}$ ($|\eta| < 1.0, p_T > 0.2 \text{ GeV/c}$)

Initial state effects: CGC + fluctuation

K. Dusling et. al PRD 87 5 (2013) 05150, A. Bzdak et. al PRC 87 6, (2013) 064906

Final state effects: Hydrodynamics

R. D. Weller et. al PLB 774 (2017) 351-356, W. Zhao et. al PLB 780 (2018) 495-500

• **Hybrid models:** How quantitatively they interplay? Relative contributions?

M. Greif et. al PRD 96 9, (2017) 091504, H. Mantysaari et. al PLB 772 (2017) 681–686

Alternatively, MC-based models?

$$J^{\nu} \rightarrow -\sum_{i} \frac{dp_{i}^{\nu}(t)}{dt} G(x - x_{i}(t))$$

Y. Kanakubo et al., Phys. Rev. C 105 (2022) 2, 024905

PYTHIA 8 String Shoving: Pushing the strings resulting in transverse pressure
C. Bierlich *et. al* PLB 779 (2018) 58-63 → strings produced from hard scatterings are also affected by the repulsive force, which then leads to observed long-range correlation even in low-multiplicity events

● AMPT String Melting: soft and hard partonic and hadronic interactions, Zi-Wei *et al.* → parton cross section value of 3 mb, fluid-like (hydrodynamic) excitations for Pb–Pb collisions and particle-like (or non-hydrodynamic) excitations for pp or p–Pb

Core vs. corona

- EPOS LHC: Parameterized hydrodynamic evolution in core T. Pierog *et. al* PRC 92, 034906
- DCCI2: Equilibrium and non-equilibrium (e.g., Y. Kanakubo et al., *Phys. Rev. C* 106, 054908, 2022))
- MC-EKRT:Refining/improving both QCD and initial condition models (e.g., M. Kuha et al., arXiv:2406.17592))

String Shoving

FIOS LH

Equilibrium and non-equilibrium fractions in small systems

DCCI2

