Hard Probes 2024

Probing Hadronization Through Jet Substructure Analysis

ArXiv: <u>arXiv:2212.11846v2</u>

Nuno Olavo Madureira

Liliana Apolinário Raghav/Rithya (nuno.olavo@tecnico.ulisboa.pt) (liliana@lip.pt) (raghav.ke@vanderbilt.edu)

Collision Physics

g – gluon

- q quark
- \overline{q} antiquark

Perturbative QCD

Collision Physics

g – gluon

- q quark
- q antiquark

Outgoing parton

g

00000000

q

q

Tree-level

Parton Shower

Perturbative QCD

Hadron

Non-perturbative QCD

2

?

?

Hadronization

Hadronization Models

<u>Lund String</u> (Pythia, Jetset)

[B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys.C 20, 317 (1983)]

Cluster Fragmentation (Herwig, Sherpa)

Hadronization Models

[B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys.C 20, 317 (1983)]

Cluster Fragmentation (Herwig, Sherpa)

[B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys.C 20, 317 (1983)]

Cluster Fragmentation (Herwig, Sherpa)

Hadronization Models

[B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys.C 20, 317 (1983)]

Cluster Fragmentation (Herwig, Sherpa)

Hadronization Models

[B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys.C 20, 317 (1983)]

[D. Amati and G. Veneziano, Phys. Lett. B 83, 87 (1979)]

8

<u>Jet</u>: highly-collimated group of final-state particles produced in a hard scattering event;

<u>**Clustering Tree</u>**: result of the iterative grouping of the jet constituents;</u>

Objective: find substructure observables with increased sensitivity to hadronization effects!

Hadron

Simulation and Jet Analysis

Monte Carlo event generators: PYTHIA 8.306 and HERWIG 7;

Settings	Values
E _e	18 GeV
E_p	275 GeV
Q^2	> 50 GeV ²
$p_{T,part}$	> 0.2 GeV/c

Jets are found using the anti-k_T jet clustering algorithm and reclustered using the T algorithm with SoftDrop grooming.

Settings	Values
R	1
$p_{T,jet}$	> 5 GeV/c
η _{jet}	-1.5 < η _{jet} < 3.5
Z _{cut}	0.1
β	0

[A. J. Larkoski et al., arXiv:1402.2657v2]
SD criterion:
$$\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$
10

[Y.-T. Chien et al, arXiv:2109,15318]

Charge Correlation Ratio:

 h_1, h_2 – pion (π), kaon (K), proton (p) X – jet substructure variable of choice

- $r_c > 0$: higher probability of producing jets with equally-charged LCP;
- $r_c < 0$: higher probability of producing jets with oppositely-charged LCP;
- $r_c = 0$: jets produced randomly with equally- or oppositelly-charged LCP.

Formation Time

[L. Apolinário et al, arXiv:2012.021999] [L. Apolinário et al, arXiv:2401.14229]

Formation Time
$$\tau_{form} = \frac{1}{2 E z (1-z) (1 - \cos \theta_{12})}$$

Estimate of the timescales involved in a particle splitting into 2 other particles that act as independent sources of additional radiation

source energy

angle between the 2 emitted prongs

energy fraction

 $\tau_1 < \tau_2$

Charge Ratio

0% same-sign, 100% opposite-sign jets

 $d\sigma_{h_1\overline{h_2}}$

 $d\sigma_{h_1h_2}$

 $X = \tau_{form}$

 $d\sigma_{h_1h_2}$

 $d\sigma_{h_1h_2}$

 $r_c =$

50% same-sign, 50% opposite-sign jets

[Similar to study in Y.-T. Chien et al, arXiv:2109,15318]

10⁻¹

5%

0.4ptr

0.2

-0.2

-0.4

-0.6

-0.8

്

 $\sqrt{s_e} = 18 \text{ GeV}, \sqrt{s_p} = 275 \text{ GeV}$

anti- k_{τ} cluster, $\dot{R} = 1$

 $Q^2 > 50 \text{ GeV}^2$, $p_{\tau}^{\text{part}} > 0.2 \text{ GeV/c}$

Charge Ratio

$$\frac{\frac{d\sigma_{h_1h_2}}{dX} - \frac{d\sigma_{h_1\overline{h_2}}}{dX}}{\frac{d\sigma_{h_1h_2}}{dX} + \frac{d\sigma_{h_1\overline{h_2}}}{dX}}, \qquad X = \tau_{form}$$

50% same-sign, 50% opposite-sign jets

> Late time LCP: r_c ~ constant and close to -1, meaning jets more likely to have oppositesign LCP;

 $r_c =$

[Similar to study in Y.-T. Chien et al, arXiv:2109,15318]

0% same-sign, 100% opposite-sign jets

Charge Ratio

$$\frac{\frac{d\sigma_{h_1h_2}}{dX} - \frac{d\sigma_{h_1\overline{h_2}}}{dX}}{\frac{d\sigma_{h_1h_2}}{dX} + \frac{d\sigma_{h_1\overline{h_2}}}{dX}}, \qquad X = \tau_{form}$$

50% same-sign, 50% opposite-sign jets

> Late time LCP: r_c ~ constant and close to -1, meaning jets more likely to have oppositesign LCP;

 $r_c =$

Early time LCP: r_c closer to 0, meaning larger charge randomization of the leading particles;

15

[Similar to study in Y.-T. Chien et al, arXiv:2109,15318]

HP2024

0% same-sign, 100% opposite-sign jets

HP2024

Charge Ratio $r_{c} = \frac{\frac{d\sigma_{h_{1}h_{2}}}{dX} - \frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX}}{\frac{d\sigma_{h_{1}h_{2}}}{dX} + \frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX}}$ 50% same-sign, 50% opposite-sign jets

 $\overline{Z_{LCP}} \sim 0.5$

$$\tau_{form,LCP} = \frac{1}{2 E z (1-z) (1 - \cos \theta_{12})} \sim \frac{1}{E \theta^2}$$

- Where in the clustering tree are the leading charged particles coming from?
- > What is the r_c dependence on jet substructure?

17

[Similar to study in Y.-T. Chien et al, arXiv:2109,15318]

 $X = \tau_{form}$

0% same-sign, 100% opposite-sign jets

Resolved SoftDrop Splitting – RSD

The RSD is the SoftDrop splitting in the clustering tree where the leading charged particles get separated into 2 different subjets;

> **Top** clustering tree:

- $N_{SD} = 2$
- $N_{RSD} = 2$
- RSD depth = $N_{RSD}/N_{SD} = 2/2$

Bottom clustering tree:

- $N_{SD} = 2$
- $N_{RSD} = 1$
- RSD depth = $N_{RSD}/N_{SD} = 1/2$

Charge Ratio vs RSD Depth

$$c_{c} = \frac{\frac{d\sigma_{h_{1}h_{2}}}{dX} - \frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX}}{\frac{d\sigma_{h_{1}h_{2}}}{dX} + \frac{d\sigma_{h_{1}\overline{h_{2}}}}{dX}} , \qquad X = \frac{N_{RS}}{N_{SL}}$$

- Large RSD depths: few subsequent branchings, "remembers" charge correlation of leading particles;
- Small RSD depths: several subsequent branchings, "forgets" charge correlation of leading particles

<u>Conclusion</u>: r_c depends strongly on jet substructure topology!

Charge Ratio with Selections

0.4 $\sqrt{s_e}$ = 18 GeV, $\sqrt{s_p}$ = 275 GeV Pythia Herwig പ $Q^2 > 50 \text{ GeV}^2$, $p_{\tau}^{\text{part}} > 0.2 \text{ GeV/c} \rightarrow \text{Pion}$ → Pion 0.2 _p_T^{jet} > 7 GeV/c, -3.5 < η_{iet} < 1.5 → Kaon - Kaon anti-k_T cluster, R = 1.0 → Proton
 → Proton
 τ re-cluster, SD: \textbf{z}_{cut} = 0.1, β = 0 $\frac{N_{RSD}}{1} \le 0.5$ -0.2N_{SD} -0.4-0.6-0.810² 10 $\tau_{\text{form,LCP}} \, [\text{fm/c}]$

20

Inclusive Plot

HP2024

Charge Ratio with Selections

Example 1 of jet topology

≻ Small τ_{form,LCP}
 ≻ Large RSD depth

Example 2 of jet topology

➤ Small τ_{form,LCP}
 ➤ Small RSD depth

Example 1 of jet topology

Small $\tau_{form,LCP}$ Large RSD depth

Example 2 of jet topology

➤ Small τ_{form,LCP}
 ➤ Small RSD depth

Conclusions

> RSD distinguishes different jet topologies, showing r_c is strongly dependent on substructure;

Selection on late RSD reveals a qualitatively different behaviours of r_c from Pythia (Lund string) and Herwig (cluster fragmentation).

Hard Probes 2024

Thank you for your attention!

Questions?

Aknowledgements

Fundação para a Ciência e a Tecnologia

European Research Council Established by the European Commission

Hard Probes 2024

Backup Slides

PYTHIA's simple shower and HERWIG's dipole shower are the parton shower descriptions that allow for the best case scenario matching between event-level variables on both Monte Carlos, such as particle rapidity, transverse momentum and azimutal angle.

Implementation

Jet analysis is performed with FastJet

Distance measure used to cluster pairs of particles together:

$$d_{ij} = min\left(p_{T1}^{2p}, p_{T2}^{2p}\right) rac{\Delta R_{ij}^2}{R^2}$$

 p_T – particle transverse momentum R – jet radius ΔR_{ij} – measure of the angular distance

> Anti- k_t algorithm:

- Sensitive to hard objects
- Unphysical clustering trees
- C/A algorithm: Angularordered trees
- τ algorithm: Reverse timeordered trees

	Parameter <i>p</i> defines the clustering algorithm		
p = -1	p=0	p = 0.5	
↓	\Downarrow	\Downarrow	
Anti-k _t	Cambridge/Aachen	τ	
algorithm	(C/A) algorithm	algorithm	
₩	\Downarrow	₩	
Jet finding	Jet substructur	e studies	
<u>τ algorithm</u>	$\wedge R_{ii}^2$	1	
$d_{ij}^{p=0.5}=min$	$m(p_{T1}, p_{T2}) \frac{2m_y}{R^2} \sim E \ z \ \theta^2 \approx$	$\tilde{\tau}_{form}$	
in the high-energy, soft and colinear limits!			

["Soft drop" (2014);

"Time reclustering for jet quenching studies" (2021)]

Results – Groomed Momentum Fraction

- ISD is highly asymmetrical; distributions extremely peaked for small z_g
- LCP is highly symmetrical; distributions extremely peaked for large z_g
- RSD is more symmetrical than 1SD and more asymmetrical than LCP; more to the likes of the LCP splitting

HP2024

Results – Formation Time

$$T_{form} = \frac{1}{2 E z (1-z) (1 - \cos \theta_{12})}$$

- > **1SD** tends to have smaller τ_{form}
- \succ LCP tends to have larger τ_{form}
- RSD sits between the 1SD and the LCP
- $\begin{array}{l} \succ \tau_{form,1SD} \neq \tau_{form,LCP} \\ \succ \tau_{form,RSD} \approx \tau_{form,LCP} \end{array}$

<u>Conclusion</u>: RSD splitting, an actual splitting from the clustering tree, is a good proxy for the LCP **RSD** Depth

 N_{RSD}/N_{SD}

$\frac{dN_{\rm jets}}{d(N_{\rm RSD}^{}/N_{\rm SD}^{})}$ - All -- All 1.4 RSD = 1SD RSD = 1SD— RSD = 2SD — RSD = 3SD -RSD = 2SD1.2 RSD = 3SD $\frac{N_{jets}}{N}$ 0.8 0.6 0.4 0.2 PYTHIA 8.306, simple shower HERWIG 7, dipole shower 0<u>∟</u> 0.2 0.4 0.6 0.8 0.2 0.6 0.8 0.4 0 0.5 0.5 N_{RSD}/N_{SD} N_{RSD}/N_{SD}

Charge Ratio – Parton Shower Dependence

Т

The behaviour observed for these jet selections is robust against parton shower descriptions;

Since the r_c is meant to be sensitive to hadronization physics, this is good news!