
Multi-Observable Analysis of Jet 
Quenching Using Bayesian Inference 

Peter Jacobs 
Lawrence Berkeley National Laboratory

University of California, Berkeley

for the JETSCAPE Collaboration

Bayesian analysis of jet quenching 1Hard Probes 2024

arXiv:2408.08247



Taxonomy of current jet quenching 
measurements
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Driven by experimental considerations: arrows connect 
observables with just one thing changed

Incl hadron suppression (ch, 0)

Incl D/B-meson RAADi-hadron IAA (high pT)

Incl jet suppression

h+jet IAA/Z+hadron IAA

/Z+jet IAA

Groomed jet substructure

Jet+h: large-angle 
radiation

Jet+h: FF
Jet profile

Jet acoplanarity

Incl D/B-jet RAA

Jet v2

Light hadron vn

D-meson vn

/Z+jet xJ, 
energy balance

Small systems

Incl /Z production

RHIC vs LHC

Di-jet AJ
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Rigorous connection of data and models: 
Bayes’s Theorem 

Prior knowledge of 
model parameters

distribution of data (“Bayesian evidence”) 

Likelihood

Posterior: probability density of 
parameters giving best description of 
the data

Likelihood incorporates covariance of data uncertainties, theory uncertainties

For a given theoretical model, which model parameters are most compatible with 
experimental data?

Bayesian Inference: combine knowledge of theory and experiment:
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1. Search for tension: do any model parameters consistently describe the data?
2. Constrain parameters: what do we learn quantitatively?
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Quantifying jet quenching
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Based primarily on inclusive hadron RAA

But datasets, theory formulations of ො𝑞, and 
QGP modeling differ

→ different ො𝑞 determinations are not 
strictly comparable

L

Apolinaro, Lee and Winn
Prog.Part.Nucl.Phys. 127 (2022) 103990
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arXiv:2408.08247
submitted to Physical Review C

First multi-observable Bayesian analysis incorporating all available inclusive 
hadron and inclusive jet suppression data (RAA) at RHIC and LHC 

What do we learn by measuring RAA of reconstructed jets?
Is ො𝑞 a universal property of the QGP? 

Different approach: study ො𝑞 differentially within a single, 
consistent framework  



Theoretical Model
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arXiv:2408.08247JETSCAPE Framework:
Hydro: calibrated 2+1D hydro

Bernhard, Moreland, and Bass, 
Nat. Phys. 15, 1113–1117 (2019)

Jet quenching:
multistage, virtuality-dependent
MATTER + LBT

JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911
JETSCAPE, arXiv:2301.02485

 

𝑓 𝜇2  incorporates coherence effects 
which reduce ො𝑞 for 𝜇 ≥ 𝑄0
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ො𝑞 𝐸, 𝜇2, 𝑇 = ො𝑞𝐻𝑇𝐿 × 𝑓(𝜇2)

ො𝑞𝐻𝑇𝐿

𝑇3 = 𝐶𝑎
50.48

𝜋
𝛼𝑠,run 𝜇2 𝜶𝒔,𝐟𝐢𝐱log

2𝐸𝑇
6𝜋𝑇2𝜶𝒔,𝒇𝒊𝒙

𝑓 𝜇2 = 𝑁
𝑒𝒄𝟑 1− 𝜇2

2𝑀𝐸 − 1

1 + 𝒄𝟏log 𝜇2

Λ𝑄𝐶𝐷
2 + 𝒄𝟐log2 𝜇2

Λ𝑄𝐶𝐷
2

𝜇≥𝑸𝟎

• 𝛼𝑠,𝑓𝑖𝑥 
• 𝑐1, 𝑐2, 𝑐3 

• 𝑄0 switching virtuality
• 𝜏 (start time)

6 parameters

𝑁 = Τ1 𝑓 𝑄0
2



Theoretical Model
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arXiv:2408.08247

Physically-motivated model which provides a 
valuable test-bench for development

JETSCAPE framework is modular
• other models can be implemented
• crucial future direction 

JETSCAPE Framework:
Hydro: calibrated 2+1D hydro
Bernhard, Moreland, and Bass, 
Nat. Phys. 15, 1113–1117 (2019)

Jet quenching:
multistage, virtuality-dependent
MATTER + LBT

JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911
JETSCAPE, arXiv:2301.02485

 

𝑓 𝜇2  includes coherence effects;
reduces ො𝑞 for 𝜇 ≥ 𝑄0
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ො𝑞 𝐸, 𝜇2, 𝑇 = ො𝑞𝐻𝑇𝐿 × 𝑓(𝜇2)

ො𝑞𝐻𝑇𝐿

𝑇3 = 𝐶𝑎
50.48

𝜋
𝛼𝑠,run 𝜇2 𝜶𝒔,𝐟𝐢𝐱log

2𝐸𝑇
6𝜋𝑇2𝜶𝒔,𝒇𝒊𝒙

𝑓 𝜇2 = 𝑁
𝑒𝒄𝟑 1− 𝜇2

2𝑀𝐸 − 1

1 + 𝒄𝟏log 𝜇2

Λ𝑄𝐶𝐷
2 + 𝒄𝟐log2 𝜇2

Λ𝑄𝐶𝐷
2

𝜇≥𝑸𝟎

• 𝛼𝑠,𝑓𝑖𝑥 
• 𝑐1, 𝑐2, 𝑐3 

• 𝑄0 switching virtuality
• 𝜏 (start time)

6 parameters

𝑁 = Τ1 𝑓 𝑄0
2



Data sets
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arXiv:2408.08247

All hadron and jet RAA data from 
RHIC and LHC  published prior 
to Febuary 2022

729 data points
• previous JETSCAPE ො𝑞 

calibration: 66 datapoints 
Phys.Rev.C 104 (2021) 024905

Uncertainty covariance taken 
from publication or estimated



Bayesian Inference in practice
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Model calculation only at 
limited number of parameter 
“design points”

 → interpolation

Optimize interpolation error: choice of design points
• AI/ML methods: active learning

Large computing effort: O(10M) CPU-hours on NSF HPC facilities

Broad-based results: many physics observables calculated for differential 
studies

ො𝑞𝐻𝑇𝐿

𝑇3 = 𝐶𝑎
50.48

𝜋
𝛼𝑠,run 𝜇2 𝜶𝒔,𝐟𝐢𝐱log

2𝐸𝑇
6𝜋𝑇2𝜶𝒔,𝒇𝒊𝒙

𝑓 𝜇2 = 𝑁
𝑒𝒄𝟑 1− 𝜇2

2𝑀𝐸 − 1

1 + 𝒄𝟏log 𝜇2

Λ𝑄𝐶𝐷
2 + 𝒄𝟐log2 𝜇2

Λ𝑄𝐶𝐷
2

𝜇≥𝑸𝟎

• 𝛼𝑠,𝑓𝑖𝑥 
• 𝑐1, 𝑐2, 𝑐3 

• 𝑄0 switching virtuality
• 𝜏 (start time)

6 parameters



From prior to posterior
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arXiv:2408.08247

JETSCAPE Preliminary

Data
Calculated priors

Data
Posterior = priors with best fit

analysis
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Data-posterior comparison: all data
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arXiv:2408.08247

Overall reasonable agreement

Significant tension in limited 
regions

→ explore more differentially

(details in subsequent slides)



Parameter posterior distributions
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arXiv:2408.08247

Combined: inclusive hadron and jet 
Hadron: inclusive hadron 

𝛼s,fix: 0.3 – 0.4
Q0: ~1-2 GeV
𝜏𝑜: < 1 fm/c
c3: larger values preferred
c1,c2: little sensitivity (not shown)

ො𝑞 𝐸, 𝜇2, 𝑇 = ො𝑞𝐻𝑇𝐿 × 𝑓(𝜇2)

ො𝑞𝐻𝑇𝐿

𝑇3 = 𝐶𝑎
50.48

𝜋
𝛼𝑠,run 𝜇2 𝜶𝒔,𝐟𝐢𝐱log
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𝑒𝒄𝟑 1− 𝜇2

2𝑀𝐸 − 1

1 + 𝒄𝟏log 𝜇2
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Extracting ො𝑞
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Put everything together: extract ො𝑞

Plot ො𝑞 at low virtuality: ො𝑞 =  ො𝑞𝐻𝑇𝐿
𝑟𝑢𝑛 × 𝑓 𝑄2

arXiv:2408.08247



Hadron vs jet RAA
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Hadron vs jet RAA
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arXiv:2408.08247



Hadron RAA: low vs high pT
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arXiv:2408.08247Combined calibration

Only hadron pT>30 GeV/c

Low  pT hadrons dominate
• due to small experimental uncertainties 

pT dependence of model does not decsribe data:
• NLO or non-pert. correction to HTL expression of ො𝑞 ?
• HTL not the correct framework? Nuclear shadowing? ...?

High pT hadrons consistent with jet data
Missing: theory uncertainty 
• large where exp uncert is small

Vary hadron pT threshold



Comparison to previous calibration
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arXiv:2408.08247

First JETSCAPE ො𝑞 calibration
PRC 104 (2021) 024905 

• hadron RAA only
• reported at 𝜇2=2.7 GeV2

Evolve current analysis to compare at 
same scale 

→ consistent
→ evolution captured correctly by 
Bayesian calibration



Next step: add jet substructure
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JETSCAPE preliminary

Substructure observables consistent with 
jet RAA 
• substructure: stronger relative constraint

Inclusive jet RAA vs low pT hadron RAA: tension
Inclusive jet RAA vs low pT jet fragmentation: consistent ???



JETSCAPE Collaboration
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Parallel talks:

Multi-observable analysis of jet quenching using Bayesian inference 
Peter Jacobs, Monday 15:40

Extraction of jet-medium interaction details through jet substructure for 
inclusive and gamma-tagged jets 
Yasuki Tachibana, Monday 17:50

Effects of hadronic reinteraction on jet fragmentation from small to 
large systems 
Hendrik Roch, Monday 18:10

Energy-energy correlators of inclusive jets in heavy-ion collisions
Yayun He, Tuesday 9:40

Correlations between hard probes and bulk dynamics in small systems
Abhijit Majumder, Tuesday 16:15

Interplay of prompt and non-prompt photons in photon-triggered jet 
observables
Chathuranga Sirimanna, Wednesday 9:40

Poster:

X-SCAPE as a universal event generator for e+p, e+e- and pp collisions
Cameron Parker, Poster Session

See also: R. Ehlers, Plenary talk, Thursday 12:05



Summary
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First comprehensive multi-observable Bayesian 
analysis of jet quenching
• enables much larger program

Overall reasonable agreement of model with data

But significant tension observed:
• low pT hadron RAA not consistent with jet and 

higher pT hadron data

Incisive probe of our understanding of jet 
quenching:
• modeling improvements needed?
• different theory approaches?

Next step(s): additional observables

Major issue for the field: theory uncertainty!



Hard Probes 2024 Bayesian analysis of jet quenching 21

Extra slides



Effect of high pT jet RAA

Hard Probes 2024 Bayesian analysis of jet quenching 22

arXiv:2408.08247



Centrality dependence
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Bayesian Inference with Active Learning
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• Optimize predictive error across 
parameter space

• No consideration of experimental data

arXiv:2408.08247
6-dimensional parameter space
Can only calculate at limited number of “design points”
Interpolate between points using Gaussian Process Emulators

→ choose design points to optimize interpolation error

Active learning: ML-based optimization
Journal of Artificial Intelligence Research (1996) 129
arXiv:2306.07480
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