

Multi-Observable Analysis of Jet Quenching Using Bayesian Inference arXiv:2408.08247

Peter Jacobs Lawrence Berkeley National Laboratory University of California, Berkeley

for the JETSCAPE Collaboration

Taxonomy of current jet quenching measurements

Driven by experimental considerations: arrows connect observables with just one thing changed

Rigorous connection of data and models: Bayes's Theorem

For a given theoretical model, which model parameters are most compatible with experimental data?

Bayesian Inference: combine knowledge of theory and experiment:

 $\vec{\theta}$: Model parameters

Prior knowledge of model parameters

Posterior: probability density of parameters giving best description of the data

distribution of data ("Bayesian evidence")

Likelihood incorporates covariance of data uncertainties, theory uncertainties

R. Ehlers, Plenary Thurs 12:05 1. Search for tension: do any model parameters consistently describe the data 2. Constrain parameters: what do we learn quantitatively?

Different approach: study \hat{q} differentially within a single, consistent framework

Bayesian Inference analysis of jet quenching using inclusive jet and hadron suppression measurements

R. Ehlers,^{1,2} Y. Chen,^{3,4,5} J. Mulligan,^{1,2} Y. Ji,⁶ A. Kumar,^{7,8,9} S. Mak,⁶ P. M. Jacobs,^{1,2} A. Majumder,⁹ A. Angerami,¹⁰ R. Arora,¹¹ S. A. Bass,¹² R. Datta,⁹ L. Du,^{8,1,2} H. Elfner,^{13,14,15} R. J. Fries,^{16,17} C. Gale,⁸ Y. He,^{18,19} B. V. Jacak,^{1,2} S. Jeon,⁸ F. Jonas,^{1,2} L. Kasper,⁵ M. Kordell II,^{16,17} R. Kunnawalkam-Elayavalli,⁵ J. Latessa,¹¹ Y.-J. Lee,^{3,4} R. Lemmon,²⁰ M. Luzum,²¹ A. Mankolli,⁵ C. Martin,²² H. Mehryar,¹¹ T. Mengel,²² C. Nattrass,²² J. Norman,²³ C. Parker,^{16,17} J.-F. Paquet,⁵ J. H. Putschke,⁹ H. Roch,⁹ G. Roland,^{3,4} B. Schenke,²⁴ L. Schwiebert,¹¹ A. Sengupta,^{16,17} C. Shen,^{9,25} M. Singh,⁵ C. Sirimanna,^{9,12} D. Soeder,²⁶ R. A. Soltz,^{9,10} I. Soudi,^{9,27,28} Y. Tachibana,²⁹ J. Velkovska,⁵ G. Vujanovic,⁷ X.-N. Wang,^{30,1,2} X. Wu,^{8,9} and W. Zhao^{9,1,2} (The JETSCAPE Collaboration)

¹Department of Physics, University of California, Berkeley CA 94270. ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley CA 94270. ³Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge MA 02139. ⁴Department of Physics, Massachusetts, Institute of Technology, Cambridge MA 02139.

> arXiv:2408.08247 submitted to Physical Review C

First multi-observable Bayesian analysis incorporating all available inclusive hadron and inclusive jet suppression data (R_{AA}) at RHIC and LHC

What do we learn by measuring R_{AA} of reconstructed jets? Is \hat{q} a universal property of the QGP?

Hard Probes 2024

Dayesian analysis of jet quenching

Theoretical Model

6

arXiv:2408.08247

JETSCAPE Framework:

Hydro: calibrated 2+1D hydro Bernhard, Moreland, and Bass, Nat. Phys. 15, 1113–1117 (2019) Jet quenching: multistage, virtuality-dependent MATTER + LBT

JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911 JETSCAPE, arXiv:2301.02485

$$\hat{q}(E,\mu^2,T) = \hat{q}^{HTL} \times f(\mu^2)$$

$$\begin{aligned} \hat{q}^{HTL} &= C_a \frac{50.48}{\pi} \alpha_{s,\text{run}}(\mu^2) \alpha_{s,\text{fix}} \log\left(\frac{2ET}{6\pi T^2 \alpha_{s,fix}}\right) \\ f(\mu^2) &= N \frac{e^{c_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + c_1 \log\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + c_2 \log^2\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \\ N &= 1/f(Q_0^2) \end{aligned}$$

6 parameters

- $\alpha_{s,fix}$ Q_0 (switching virtuality)
- c_1, c_2, c_3 τ (start time)

Hard Probes 2024

 $f(\mu^2)$ incorporates coherence effects which reduce \hat{q} for $\mu \ge Q_0$

Theoretical Model

JETSCAPE Framework:

 $\hat{q}(E,\mu^2,T) = \hat{q}^{HTL} \times f(\mu^2)$

Hydro: calibrated 2+1D hydro Bernhard, Moreland, and Bass, Nat. Phys. 15, 1113–1117 (2019) Jet quenching: multistage, virtuality-dependent MATTER + LBT JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911 JETSCAPE, arXiv:2301.02485

$$\begin{aligned} \hat{q}^{HTL} \\ \overline{T^3} &= C_a \frac{50.48}{\pi} \alpha_{s,run}(\mu^2) \alpha_{s,fix} \log\left(\frac{2ET}{6\pi T^2 \alpha_{s,fix}}\right) \\ f(\mu^2) &= N \frac{e^{c_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + c_1 \log\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + c_2 \log^2\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \\ N &= 1/f(Q_0^2) \end{aligned}$$

6 parameters

- $\alpha_{s,fix}$ Q_0 (switching virtuality)
- c_1, c_2, c_3 τ (start time)

Hard Probes 2024

Physically-motivated model which provides a valuable test-bench for development

JETSCAPE framework is modular

- other models can be implemented
- crucial future direction

Data sets

arXiv:2408.08247

All hadron and jet R_{AA} data from RHIC and LHC published prior to Febuary 2022

729 data points

• previous JETSCAPE \hat{q} calibration: 66 datapoints *Phys.Rev.C* 104 (2021) 024905

Uncertainty covariance taken from publication or estimated

Inclusive hadron R_{AA}									
Collab./ref.	System; VSNN	Species	Accept.	centr.	$p_{\rm T}$ range				
	[TeV]			%	[GeV/c]				
STAR [101]	Au–Au; 0.2	charged	$ \eta < 0.5$	[0,40]	[9,12]				
ALICE [102]	Pb–Pb; 2.76, 5.02	charged	$ \eta < 0.8$	[0, 50]	[9,50]				
ATLAS [99]	Pb-Pb; 2.76	charged	$ \eta < 2$	[0,40]	[9,150]				
CMS [103]	Pb-Pb; 2.76	charged	$ \eta < 1.0$	[0, 50]	[9,100]				
CMS [100]	Pb-Pb; 5.02	charged	$ \eta < 1.0$	[0, 50]	[9,400]				
PHENIX [104]	Au–Au; 0.2	π^0	$ \eta < 0.35$	[0, 50]	[9,20]				
ALICE [105, 106]	Pb-Pb; 2.76	π^0	$ \eta < 0.7$	[0, 50]	[9,20]				
ALICE [107, 108]	Pb-Pb; 2.76	π^{\pm}	$ \eta < 0.8$	[0,40]	[9,20]				
ALICE [109]	Pb-Pb; 5.02	π^{\pm}	$ \eta < 0.8$	[0, 50]	[9,20]				

Inclusive jet R_{AA}									
Collab./ref.	System; $\sqrt{s_{\rm NN}}$	type	R	Accept.	centr.	$p_{\rm T}$ range			
	[TeV]				%	[GeV/c]			
STAR [110]	Au–Au; 0.2	charged	[0.2, 0.4]	$ \eta < 1 - R$	[0,10]	[15, 30]			
ALICE [111]	Pb–Pb; 2.76	full	0.2	$ \eta < 0.5$	[0, 30]	[30, 100]			
ALICE [22]	Pb–Pb; 5.02	full	0.2, 0.4	$ \eta < 0.5$	[0,10]	[40, 140]			
ATLAS [112]	Pb–Pb; 2.76	full	0.4	$ \eta < 2.1$	[0, 50]	[32,500]			
ATLAS [113]	Pb–Pb; 5.02	full	0.4	$ \eta < 2.8$	[0, 50]	[50, 1000]			
CMS [114]	Pb–Pb; 2.76	full	[0.2, 0.4]	$ \eta < 2.0$	[0, 50]	[70, 300]			
CMS [115]	Pb-Pb; 5.02	full	[0.2, 1.0]	$ \eta < 2.0$	[0, 50]	[200, 1000]			

Bayesian Inference in practice

$$\begin{aligned} \frac{\hat{q}^{HTL}}{T^3} &= C_a \frac{50.48}{\pi} \alpha_{s,\text{run}}(\mu^2) \boldsymbol{\alpha}_{s,\text{fix}} \log\left(\frac{2ET}{6\pi T^2 \boldsymbol{\alpha}_{s,fix}}\right) \\ f(\mu^2) &= N \frac{e^{\boldsymbol{c}_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + \boldsymbol{c}_1 \log\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + \boldsymbol{c}_2 \log^2\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \bigg|_{\mu \ge \boldsymbol{Q}_0} \end{aligned}$$

Model calculation only at limited number of parameter "design points" \rightarrow interpolation

6 parameters

- $\alpha_{s,fix}$ Q_0 (switching virtuality)
- $c_1, c_2, c_3 \bullet \tau$ (start time)

Optimize interpolation error: choice of design points

AI/ML methods: active learning

Large computing effort: O(10M) CPU-hours on NSF HPC facilities

Broad-based results: many physics observables calculated for differential studies

Hard Probes 2024

Data-posterior comparison: all data

(details in subsequent slides)

arXiv:2408.08247

11

Overall reasonable agreement

Significant tension in limited regions

 \rightarrow explore more differentially

Parameter posterior distributions

arXiv:2408.08247

Combined: inclusive hadron and jet Hadron: inclusive hadron

 $\hat{q}(E,\mu^2,T) = \hat{q}^{HTL} \times f(\mu^2)$

$$\begin{aligned} \frac{\hat{q}^{HTL}}{T^3} &= C_a \frac{50.48}{\pi} \alpha_{s,\text{run}}(\mu^2) \boldsymbol{\alpha}_{s,\text{fix}} \log\left(\frac{2ET}{6\pi T^2 \boldsymbol{\alpha}_{s,fix}}\right) \\ f(\mu^2) &= N \frac{e^{\boldsymbol{c}_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + \boldsymbol{c}_1 \log\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + \boldsymbol{c}_2 \log^2\left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \bigg|_{\mu \ge \boldsymbol{Q}_0} \end{aligned}$$

6 parameters

 $\alpha_{s,fix}$ • Q_0 (switching virtuality)

$$c_1, c_2, c_3 \bullet \tau$$
 (start time)

$$\alpha_{s,fix}$$
: 0.3 – 0.4
 Q_0 : ~1-2 GeV
 τ_o : < 1 fm/c
 c_3 : larger values preferred
 c_1,c_2 : little sensitivity (not shown)

Hadron vs jet R_{AA}

Hadron vs jet R_{AA}

Hadron R_{AA} : low vs high p_T

Combined calibration

Low p_T hadrons dominate

• due to small experimental uncertainties

arXiv:2408.08247

High p_T hadrons consistent with jet data Missing: theory uncertainty

• large where exp uncert is small

p_T dependence of model does not decsribe data:

- NLO or non-pert. correction to HTL expression of \hat{q} ?
- HTL not the correct framework? Nuclear shadowing? ...?

Comparison to previous calibration

First JETSCAPE *q̂* calibration PRC 104 (2021) 024905

- hadron R_{AA} only
- reported at $\mu^2 = 2.7 \text{ GeV}^2$

Evolve current analysis to compare at same scale

- \rightarrow consistent
- \rightarrow evolution captured correctly by Bayesian calibration

arXiv:2408.08247

Next step: add jet substructure

Hard Probes 2024

JETSCAPE Collaboration

Parallel talks:

Multi-observable analysis of jet quenching using Bayesian inference Peter Jacobs, Monday 15:40

Extraction of jet-medium interaction details through jet substructure for inclusive and gamma-tagged jets Yasuki Tachibana, Monday 17:50

Effects of hadronic reinteraction on jet fragmentation from small to large systems Hendrik Roch, Monday 18:10

Energy-energy correlators of inclusive jets in heavy-ion collisions Yayun He, Tuesday 9:40

Correlations between hard probes and bulk dynamics in small systems Abhijit Majumder, Tuesday 16:15

Interplay of prompt and non-prompt photons in photon-triggered jet observables Chathuranga Sirimanna, Wednesday 9:40

Poster:

X-SCAPE as a universal event generator for e+p, e+e- and pp collisions Cameron Parker, Poster Session

See also: R. Ehlers, Plenary talk, Thursday 12:05

Summary

First comprehensive multi-observable Bayesian analysis of jet quenching

• enables much larger program

Overall reasonable agreement of model with data

But significant tension observed:

• low p_T hadron R_{AA} not consistent with jet and higher p_T hadron data

Incisive probe of our understanding of jet quenching:

- modeling improvements needed?
- different theory approaches?

Next step(s): additional observables

Major issue for the field: theory uncertainty!

Bayesian analysis of jet

Extra slides

Effect of high p_T jet R_{AA}

Centrality dependence

Bayesian Inference with Active Learning

6-dimensional parameter space Can only calculate at limited number of "design points" Interpolate between points using Gaussian Process Emulators \rightarrow choose design points to optimize interpolation error

Active learning: ML-based optimization

space

Journal of Artificial Intelligence Research (1996) 129 arXiv:2306.07480

•

arXiv:2408.08247

No consideration of experimental data