

Multi-Observable Analysis of Jet Quenching Using Bayesian Inference *arXiv:2408.08247*

Peter Jacobs Lawrence Berkeley National Laboratory University of California, Berkeley

for the JETSCAPE Collaboration

Taxonomy of current jet quenching measurements

Driven by experimental considerations: arrows connect observables with just one thing changed

Rigorous connection of data and models: Bayes's Theorem

For a given theoretical model, which model parameters are most compatible with experimental data?

Bayesian Inference: combine knowledge of theory and experiment:

 $\vec{\theta}$: Model parameters

Prior knowledge of model parameters

Posterior: probability density of parameters giving best description of the data

distribution of data ("Bayesian evidence")

Likelihood incorporates covariance of data uncertainties, theory uncertainties

R. Ehlers, Plenary Thurs 12:05 1. Search for tension: do any model parameters consistently describe the data 2. Constrain parameters: what do we learn quantitatively?

Different approach: study \hat{q} differentially within a single, consistent framework

Bayesian Inference analysis of jet quenching using inclusive jet and hadron suppression measurements

R. Ehlers, ^{1, 2} Y. Chen, ^{3, 4, 5} J. Mulligan, ^{1, 2} Y. Ji, ⁶ A. Kumar, ^{7, 8, 9} S. Mak, ⁶ P. M. Jacobs, ^{1, 2} A. Majumder, ⁹ A. Angerami,¹⁰ R. Arora,¹¹ S. A. Bass,¹² R. Datta,⁹ L. Du,^{8,1,2} H. Elfner,^{13,14,15} R. J. Fries,^{16,17} C. Gale,⁸ Y. He,^{18,19} B. V. Jacak,^{1,2} S. Jeon,⁸ F. Jonas,^{1,2} L. Kasper,⁵ M. Kordell II,^{16,17} R. Kunnawalkam-Elayavalli,⁵ J. Latessa,¹¹ Y.-J. Lee,^{3,4} R. Lemmon,²⁰ M. Luzum,²¹ A. Mankolli,⁵ C. Martin,²² H. Mehryar,¹¹ T. Mengel,²² C. Nattrass,²² J. Norman,²³ C. Parker,^{16,17} J.-F. Paquet,⁵ J. H. Putschke,⁹ H. Roch,⁹ G. Roland,^{3,4} B. Schenke,²⁴ L. Schwiebert,¹¹ A. Sengupta,^{16,17} C. Shen,^{9,25} M. Singh,⁵ C. Sirimanna,^{9,12} D. Soeder,²⁶ R. A. Soltz,^{9,10} I. Soudi, 9, 27, 28 Y. Tachibana, 29 J. Velkovska, ⁵ G. Vujanovic, ⁷ X.-N. Wang, ^{30, 1, 2} X. Wu, ^{8, 9} and W. Zhao^{9, 1, 2} (The JETSCAPE Collaboration)

¹Department of Physics, University of California, Berkeley CA 94270 . ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley CA 94270. 3 Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge MA 02139. ⁴ Department of Physics Massachusetts Institute of Technology Cambridge MA 09130

> *arXiv:2408.08247 submitted to Physical Review C*

First multi-observable Bayesian analysis incorporating all available inclusive hadron and inclusive jet suppression data (R_{AA}) at RHIC and LHC

What do we learn by measuring R_{AA} of reconstructed jets? Is \hat{q} a universal property of the QGP?

Theoretical Model

Hydro: calibrated 2+1D hydro Bernhard, Moreland, and Bass, Nat. Phys. 15, 1113–1117 (2019) Jet quenching: multistage, virtuality-dependent MATTER + LBT JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911

JETSCAPE, arXiv:2301.02485

$$
\hat{q}(E,\mu^2,T)=\hat{q}^{HTL}\times f(\mu^2)
$$

$$
\frac{\hat{q}^{HTL}}{T^3} = C_a \frac{50.48}{\pi} \alpha_{s, \text{run}}(\mu^2) \alpha_{s, \text{fix}} \log \left(\frac{2ET}{6\pi T^2 \alpha_{s, \text{fix}}} \right)
$$
\n
$$
f(\mu^2) = N \frac{e^{c_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + c_1 \log \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + c_2 \log^2 \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \bigg|_{\mu \ge 0}
$$

6 parameters

- $\alpha_{s,fix}$ • Q_0 (switching virtuality)
- c_1, c_2, c_3 τ (start time)

 $f(\mu^2)$ incorporates coherence effects which reduce \hat{q} for $\mu \geq Q_0$

Theoretical Model

JETSCAPE Framework:

 $\hat{q}(E, \mu^2, T) = \hat{q}^{HTL} \times f(\mu^2)$

Hydro: calibrated 2+1D hydro Bernhard, Moreland, and Bass, Nat. Phys. 15, 1113–1117 (2019) Jet quenching: multistage, virtuality-dependent MATTER + LBT JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911 JETSCAPE, arXiv:2301.02485

$$
\frac{\hat{q}^{HTL}}{T^3} = C_a \frac{50.48}{\pi} \alpha_{s, \text{run}}(\mu^2) \alpha_{s, \text{fix}} \log \left(\frac{2ET}{6\pi T^2 \alpha_{s, \text{fix}}} \right)
$$
\n
$$
f(\mu^2) = N \frac{e^{c_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + c_1 \log \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + c_2 \log^2 \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \bigg|_{\mu \ge 0}
$$

6 parameters

- $\alpha_{s,fix}$ • Q_0 (switching virtuality)
- c_1, c_2, c_3 τ (start time)

Physically-motivated model which provides a valuable test-bench for development

JETSCAPE framework is modular

- other models can be implemented
- crucial future direction

Hard Probes 2024 Bayesian analysis of jet quenching

Data sets

arXiv:2408.08247

All hadron and jet R_{AA} data from RHIC and LHC published prior to Febuary 2022

729 data points

• previous JETSCAPE \hat{q} calibration: 66 datapoints *Phys.Rev.C 104 (2021) 024905*

Uncertainty covariance taken from publication or estimated

Bayesian Inference in practice

$$
\frac{\hat{q}^{HTL}}{T^3} = C_a \frac{50.48}{\pi} \alpha_{s, \text{run}}(\mu^2) \alpha_{s, \text{fix}} \log \left(\frac{2ET}{6\pi T^2 \alpha_{s, \text{fix}}} \right)
$$

$$
f(\mu^2) = N \frac{e^{c_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + c_1 \log \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + c_2 \log^2 \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \bigg|_{\mu \ge 0}
$$

Model calculation only at limited number of parameter "design points" \rightarrow interpolation

6 parameters

- $\alpha_{s,fix}$ Q_0 (switching virtuality
- c_1, c_2, c_3 τ (start time)
-

Optimize interpolation error: choice of design points

• AI/ML methods: active learning

Large computing effort: O(10M) CPU-hours on NSF HPC facilities

Broad-based results: many physics observables calculated for differential studies

Data-posterior comparison: all data

(details in subsequent slides)

Overall reasonable agreement

Significant tension in limited regions

 \rightarrow explore more differentially

Parameter posterior distributions

arXiv:2408.08247

Combined: inclusive hadron and jet Hadron: inclusive hadron

$$
\hat{q}(E,\mu^2,T)=\hat{q}^{HTL}\times f(\mu^2)
$$

$$
\frac{\hat{q}^{HTL}}{T^3} = C_a \frac{50.48}{\pi} \alpha_{s, \text{run}}(\mu^2) \alpha_{s, \text{fix}} \log \left(\frac{2ET}{6\pi T^2 \alpha_{s, \text{fix}}}\right)
$$

$$
f(\mu^2) = N \frac{e^{c_3 \left(1 - \frac{\mu^2}{2ME}\right)} - 1}{1 + c_1 \log \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right) + c_2 \log^2 \left(\frac{\mu^2}{\Lambda_{QCD}^2}\right)} \bigg|_{\mu \ge 0}
$$

6 parameters

 $\alpha_{s,fix}$ Q_0 (switching virtuality)

•
$$
c_1, c_2, c_3
$$
 • τ (start time)

$$
\begin{array}{|l|l|}\n\hline\n\alpha_{s,fix}: 0.3 - 0.4 \\
\hline\nQ_0: ~1-2 GeV \\
\tau_0: < 1 fm/c \\
c_3: larger values preferred \\
c_1,c_2: little sensitivity (not shown)\n\end{array}
$$

Hadron vs jet R_{AA}

Hadron vs jet R_{AA}

Hadron R_{AA} : low vs high p_T

Low p_T hadrons dominate

• due to small experimental uncertainties

High p_T hadrons consistent with jet data Missing: theory uncertainty

large where exp uncert is small

 p_T dependence of model does not decsribe data:

- NLO or non-pert. correction to HTL expression of \hat{q} ?
- Hard Probes 2024 **•• HTL not the correct framework? Nuclear shadowing? ...? •• 16** 16

Comparison to previous calibration

First JETSCAPE \hat{q} calibration *PRC 104 (2021) 024905*

- hadron R_{AA} only
- reported at μ^2 =2.7 GeV²

Evolve current analysis to compare at same scale

- \rightarrow consistent
- \rightarrow evolution captured correctly by Bayesian calibration

arXiv:2408.08247

Next step: add jet substructure

JETSCAPE Collaboration

Parallel talks:

Multi-observable analysis of jet quenching using Bayesian inference Peter Jacobs, Monday 15:40

Extraction of jet-medium interaction details through jet substructure for inclusive and gamma-tagged jets Yasuki Tachibana, Monday 17:50

Effects of hadronic reinteraction on jet fragmentation from small to large systems Hendrik Roch, Monday 18:10

Energy-energy correlators of inclusive jets in heavy-ion collisions Yayun He, Tuesday 9:40

Correlations between hard probes and bulk dynamics in small systems Abhijit Majumder, Tuesday 16:15

Interplay of prompt and non-prompt photons in photon-triggered jet observables Chathuranga Sirimanna, Wednesday 9:40

Poster:

X-SCAPE as a universal event generator for e+p, e+e- and pp collisions Cameron Parker, Poster Session

See also: R. Ehlers, Plenary talk, Thursday 12:05

Summary

First comprehensive multi-observable Bayesian analysis of jet quenching

• enables much larger program

Overall reasonable agreement of model with data

But significant tension observed:

low p_T hadron R_{AA} not consistent with jet and higher p_T hadron data

Incisive probe of our understanding of jet quenching:

- modeling improvements needed?
- different theory approaches?

Next step(s): additional observables

Major issue for the field: theory uncertainty!

Extra slides

Effect of high p_T jet R_{AA}

Centrality dependence

Bayesian Inference with Active Learning

6-dimensional parameter space Can only calculate at limited number of "design points" Interpolate between points using Gaussian Process Emulators \rightarrow choose design points to optimize interpolation error

Active learning: ML-based optimization

Journal of Artificial Intelligence Research (1996) 129 arXiv:2306.07480

