

Measurements of the Azimuthal Anisotropy of Jets and High- p_{τ} Charged Particles in Pb+Pb Collisions with the ATLAS Detector

Xiaoning Wang for the ATLAS Collaboration

September 23, 2024

NA-CHAMPAIGN

Jet Energy Loss in QGP

- Hard scattered partons lose energy when traversing through QGP
 - Left: jet R_{AA} Right: charged particle R_{AA}
- Energy loss study
 - Probe short-distance parton interaction in QGP

Xiaoning Wang ATLAS Collaporation

Azimuthal Anisotropies for High- p_{τ} Probes

- High- p_{τ} probe v_{p} are sensitive to initial state geometry, energy loss, and jet fragmentation.
- Initial geometry -> flow harmonics
 - \circ v; average geometry
 - Higher-order v_n : event-by-event fluctuation
- Non-flow: contributions from correlations unrelated to initial geometry
 - e.g., short-distance correlations from resonance decay, dijet productions, etc.

Azimuthal Anisotropies for High- p_{τ} Probes

- High- p_{τ} probe v_{p} are sensitive to initial state geometry, energy loss, and jet fragmentation.
- Initial geometry -> flow harmonics
 - \circ v_2 : average geometry
 - Higher-order v_n : event-by-event fluctuation
- Non-flow: contributions from correlations unrelated to initial geometry
 - e.g., short-distance correlations from resonance decay, dijet productions, etc.

Azimuthal Anisotropies for High- p_{τ} Probes

- High- p_{τ} probe v_{p} are sensitive to initial state geometry, energy loss, and jet fragmentation.
- Initial geometry -> flow harmonics
 - \circ v_2 : average geometry
 - Higher-order v_n : event-by-event fluctuation
- Non-flow: contributions from correlations unrelated to initial geometry
 - e.g., resonance decay, back-to-back dijet productions, etc. Ο

Probes of Hard Sector Energy Loss

Radius dependent jet quenching measurements from ATLAS **Anne Sickles** Sept 23: 14:00-14:20

Jet v

- Azimuthal modulation of jet production with respect to the n-th order event plane
- ATLAS result with Run II data: Phys.Rev.C 105 (2022) 6, 064903 0
 - Jet w/ barrel calorimeter (|y| < 1.2)
 - Event plane w/ FCal (4.0 < $|\eta|$ < 4.9)

Jet substructure measurements with small and large radius jets Martin Rybar Sept 23: 14:20-14:40

Jets: Hard-jet correlation Riccardo Longo Sept 26: 11:40-12:05

- High- p_{τ} charged particles v_{n}
 - High-pT charged particles as proxy of jet, carrying a fraction of jet momentum
 - Preliminary ATLAS result with Run II data: ATLAS-CONF-2023-007 0
 - Particle w/ inner detector ($|\eta| < 2.5$)
 - Event plane w/ FCal (3.2 < $|\eta|$ < 4.9)

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

Event Plane Method for Jet v_n

- For each event, measure Ψ_n^{obs} and modulation of jet production in relative azimuthal angle $\Delta \phi$ in bins of jet p_{τ} and event centrality.
- Yields are unfolded in p_{τ} and $\Delta \phi$

Xiaoning Wang ATLAS Collaboration

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

Centrality of Jet v_n

- Non-zero v_2 with strong centrality dependence for all except for 0-5%.
- Non-zero v_3 for 0-40% at ~0.01 with weak centrality dependence
 - Centrality dependence of v_2 and v_3 similar to inclusive soft hadrons v_n
- No evidence of non-zero V_4

Xiaoning Wang ATLAS Collaboration

Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

p_{τ} Dependence of Jet v_{μ}

- v_3 has weak p_T dependence
 - central events: large uncertainties; constant Ο
 - Mid-central events: positive up to ~89 GeV then decreases with p_{τ} Ο

High- p_{τ} Track v_n with Scalar Product (SP) Method

- An event is divided into different regions by pseudo-rapidity
- Azimuthal angle of tracks correlated w/ that of FCal -> large pseudo-rapidity gap (η > 3.2)
 - suppress non-flow contributions Ο
 - resonance decay, particles of same jet, back-to-back dijet, etc.
- This result:
 - full luminosity sampled in high- p_{τ} region w/ ATLAS jet triggers for 2018 Ο
 - statistics +; p_{τ} range + Ο

More about SP Method:

- Explanation of method: Phys.Rev.C 87 (2013) 4, 044907, DOI: 10.1103/PhysRevC.87.044907
- ATLAS SP method measurements with 2015 data: Eur.Phys.J.C 78 (2018) 12, 997, DOI: 10.1140/epjc/s10052-018-6468-7

- Non-zero v, with strong centrality dependence;
- Non-zero v_3 with weak centrality dependence;
- Similar to soft hadron inclusive v_n ;

p_{τ} Dependence of Charged Particle v_n : p_{τ} > 35 GeV

- v_2 decreases with p_{τ}
- v_3 for 0-40% for p_7 > 35 GeV consistent with 0

ATLAS-CONF-2023-007

Understanding different probes

Between jets & tracks...

- Similar centrality dependence
 - strong centrality dependence for v_2 Ο
 - weak centrality dependence for v_3 in 0-40% Ο
 - similar to those of soft hadron v_n Ο

DOI: 10.1007/JHEP01(2020)051

Phys.Rev.C 105 (2022) 6, 064903 DOI: 10.1103/PhysRevC.105.064903

Understanding different probes

Between jets & tracks...

- p_{τ} dependence within hard sector
- In mid-central collisions (10-40%)
 - non-zero jet v_3 up to ~89 GeV Ο
 - non-zero charged particle v_3 up to ~20 GeV
- Difference in the probe:
 - charged-particle sensitive to additional fluctuations in **jet** -0.06 (a) Ο fragmentation

0.1

0.05

fragmentation p_T mapping between \hat{p}_T Ο particle can be different between v_2 and v_3

Collaboration S ATLA! Xiaoning Wang

14

Phys.Rev.C 105 (2022) 6, 064903 DOI: 10.1103/PhysRevC.105.064903

Understanding different probes

Between jets & tracks...

- η dependence:
 - Bigger η gap (on average) for charged particles:
 - suppression of short-range non-flow $(-v_3)$
 - bigger event-plane longitudinal decorrelation $(-v_3)$
 - suppression of back-to-back dijet contribution $(+v_3)$
- Useful tool:
 - η -dependent charged particle v_n measurements in high- p_T

V3

Xiaoning Wang ATLAS Collaboration

15

- v_2 {*EP*} and v_2 {*SP*} have different sensitivity to fluctuations in the underlying v_n {*EP*} v_n distribution
- Useful tool: multi-particle correlation studies

Phys.Rev.C 87 (2013) 4, 044907 e-Print: arXiv: 1209.2323

ATLAS measurements of pT fluctuations and vn-pT correlations Tomasz Bold Sept 23: 16:50-17:10 (Last talk)

 $v_n \{EP\} \xrightarrow{} \sqrt{\langle v_n^2 \rangle}$ $v_n \{EP\} \xrightarrow{} \sqrt{\langle v_n^2 \rangle}$ $v_n \{EP\} \xrightarrow{} \sqrt{\langle v_n^2 \rangle}$ $v_n \{SP\} = \sqrt{\langle v_n^2 \rangle}$ Dhug Day (97/2012) 4 044007

Theoretical Comparisons

JHEP 05 (2021) 041, arXiv: 2010.13680

Phys.Rev.C 91 (2015) 054908, arXiv: 1503.03313

Looking forward to theoretical calculations for charged particles!

Collaboration

4

Xiaoning Wang

- Extended the *p_T* range of energy loss anisotropy measurements in hard sectors
- For both jet and charged particle
 - Similar to soft sector centrality dependence;
- In mid-centrality
 - Non-zero jet v₃ up to 100 GeV
 - Non-zero charged particle v, up to 20 GeV
- Multi-particle correlation, eta-dependent study feasible with 2018 Run II data by ATLAS
- ATLAS heavy-ion public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u>

Xiaoning Wang ATLAS Collaboration

Summary

- Extended the *p_T* range of energy loss anisotropy measurements in hard sectors
- For both jet and charged particle

• Similar to soft sector centrality dependence;

- In mid-centrality
 - Non-zero jet v, up to 100 GeV
 - Non-zero charged particle v, up to 20 GeV
- Multi-particle correlation, eta-dependent study feasible with 2018 Run II data by ATLAS
- ATLAS heavy-ion public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u>

Xiaoning Wang ATLAS Collaboration

- Multi-particle correlation, eta-dependent study feasible with 2018 Run II data by ATLAS
- ATLAS heavy-ion public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

- Multi-particle correlation, eta-dependent study feasible with 2018 Run II data by ATLAS
- ATLAS heavy-ion public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

Comparison to other v measurements

ATLAS

<mark>ک</mark>

 v_2

20-40% Jet, this result

100

30-40% h[±], CMS

50

 V_2

0.12

(a)

Phys.Lett.B 776 (2018) 195-216, e-Print: arXiv:1702.00630 ATLAS 2.76 TeV Jet:

Phys.Rev.Lett. 111 (2013) 15, 152301, e-Print: arXiv:1306.6469 ALICE 2.76 TeV Jet:

Phys.Lett.B 753 (2016) 511-525, e-Print: arXiv:1509.07334

This result: Phys.Rev.C 105 (2022) 6, 064903 e-Print: arXiv: 2111.06606

150

Xiaoning Wang

200

Comparison to other charged particle v_n measurements

measurements to 200 GeV

This result: ATLAS-CONF-2023-007

Inclusive soft hadron v_n

JHEP 01 (2020) 051 DOI: 10.1007/JHEP01(2020)051

Jet v_3 and v_4 results

Phys.Rev.C 105 (2022) 6, 0 e-Print: arXiv: 2111.06606

ATLAS Collaboration Xiaoning Wang 26

Charged particle v_n for 10-20 GeV

Xiaoning Wang ATLAS Collaboration

Details of SP Method

- Flow vectors are computed for each subevent
 - * Negative and positive FCal with calorimeter tower energy $(Q^{N\mid P})$
 - Negative and positive inner detector with tracks $(q_{n,j})$
- Final Formula:

•
$$v_n{SP} = Re \frac{\langle q_{n,j}^* Q_n^{N|P} \rangle}{\sqrt{\langle Q_n^{N*} Q_n^P \rangle}}$$

ATLAS Collaboration Xiaoning Wang

28

Charged particles v_4 compared to ATLAS 2015 measurements

ATLAS Collaboration Xiaoning Wang

29

Charged particles v_{j} in other centralities

_	
_	
-	
0	
-	
-	
1	
-	
-	
0	
1	
2	
-	
-	
1	

Charged particles v_{q} in other centralities

Charged particles v_{A} in other centralities

Pb+Pb 1.72 nb⁻¹

√s_{NN} = 5.02 TeV

5-10%

|η| < 2.5

10²

p_T [GeV]

Luminosity Comparisons

ATLAS 2015 charged particle: *Eur.Phys.J.C* 78 (2018) 12, 997, e-Print: arXiv: 1808.03951 CMS 2015 charged particle: *Phys.Lett.B* 776 (2018) 195-216, e-Print: arXiv:1702.00630

ATLAS Collaboration Xiaoning Wang