

Elliptic Anisotropy at High p_T in pPb Collisions using **Subevent Cumulants at CMS**

Rohit Kumar Singh

(For the CMS Collaboration)

Indian Institute of Technology Madras

Date: Sept 23, 2024

QGP discovery at RHIC: 2005 - 2006

EVIDENCE FOR A DENSE LIQUID

Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow. Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.

M. Roirdan and W. Zajc Scientific American, May 2006

Rohit Kumar Singh 2

Nuclear Modification Factor in pPb and PbPb inutral modification Factor in pl D and I DI D

around unity show the *T*AA and pp luminosity uncertainties, respectively, while the yellow

1.4 1.6

CMS

27.4 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb

CMS

1.4 1.6

CMS

27.4 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb

- R_{AA} shows max suppression in central bins in PbPb \mathbf{z} *R*_{AA} snows max suppression in central bins in PDPD $\begin{bmatrix} z & z \end{bmatrix}$
- \clubsuit Weakening of both magnitude and p_T dependence in peripheral **bins**
- **→ No suppression in 2-10 GeV region in minimum bias pPb**
- \clubsuit Weak p_T dependence for p_T > 10 GeV
- \diamond pPb: similar system size as peripheral PbPb but no suppression **(Caution: Complications from centrality bias factors in pPb)** 400 (pp) and 0.7–400 GeV (PbPb). Using these spectra, the nuclear modification factor *R*AA (Caution: Complications from centrality bias factors in pPb) compared to results at ^p*s*NN ⁼ 2.76 TeV from CMS [11] (all centrality bins), ALICE [9] (in the $\overline{}$

Nuclear Modification Factor in pPb and PbPb inutral modification Factor in pl D and I DI D

1.6

27.4 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb

CMS.

1.6

27.4 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb

- R_{AA} shows max suppression in central bins in PbPb \mathbf{z} *R*_{AA} snows max suppression in central bins in PDPD $\begin{bmatrix} z & z \end{bmatrix}$
- \clubsuit Weakening of both magnitude and p_T dependence in peripheral **bins**
- **→ No suppression in 2-10 GeV region in minimum bias pPb**
- \clubsuit Weak p_T dependence for p_T > 10 GeV
- \diamond pPb: similar system size as peripheral PbPb but no suppression **(Caution: Complications from centrality bias factors in pPb)** See De 400 (pp) and 0.7–400 GeV (PbPb). Using these spectra, the nuclear modification factor *R*AA compared to results at ^p*s*NN ⁼ 2.76 TeV from CMS [11] (all centrality bins), ALICE [9] (in the 0–5% and 5–10% centrality ranges), and ATLAS [10] (in the 0–5% centrality range). The yellow

maximum suppression of a factor of 7–8 around *p*^T =7 GeV. At higher *p*T, it exhibits a rise,

See [Dener's talk](https://indico.cern.ch/event/1339555/contributions/6040804/) on Jet Quenching in pPb

Rohit Kumar Singh **more peripheral, and** *p***T** dependence of the magnitude and *p*T dependence of the magnitude is observed. Comparisons of the measured *R*AA values to the 2.76 TeV results reveal similar *p*^T

Phys. Lett. B 776 (2017) 195

- Azimuthal Anisotropy (v_n) at high p_T (> 10 GeV/c) in AA: α α at maximum α α β γ γ α β β γ γ γ γ γ γ
	- \triangle **Energy loss + Fluctuations, no hydrodynamics**
	- **❖** Sensitive to the path length of high p_T parton in QGP medium (Jet Quenching)

Previous Measurements of v_n **in pPb at High** p_T charged-particle in magnitude and shows a constant of *c* MS ℓ \sum_{n} in pPb at High p_T .

Previous Measurements of v_n **in pPb at High** p_T charged-particle in magnitude and shows a constant of *c* MS ℓ \sum_{n} in pPb at High p_T .

Previous Measurements of v_n **in pPb at High** p_T charged-particle in magnitude and shows a constant of *c* MS ℓ \sum_{n} in pPb at High p_T .

 1 10

Cumulant method:

 Multiparticle correlation technique Non-flow suppression in a data-driven way

HBT, Coulomb *cn*{4} = ⟨⟨4⟩⟩ − 2 ⋅ ⟨⟨2⟩⟩⟨⟨2⟩⟩ ⁹⁶ collisions per bunch crossing in the pPb data varied between 0.1 and 0.25. The procedure used ⁹⁷ for identifying and rejecting events with pileup was similar to that described in Ref. [44].

for the same di↵erential flow harmonic *v*⁰

Q-cumulant: 101 times $151, 52$, with the multiparticle correlations being inherently less sensitive to few-particle correlations 10 102 correlations, such as those arising from jet fragmentation and back-to-back-to-back-to-back-to-back-to-back-

¹⁰⁹ Flow Particles (RFPs). In this analysis, the RFPs for the cumulant method are charged hadrons

n.

Cumulant method:

 Multiparticle correlation technique Non-flow suppression in a data-driven way

$$
\therefore \qquad = \sum_{\varphi_2 \atop \varphi_2 \text{ is odd}} \varphi_2 + \sum_{\varphi_3 \text{ is odd}} \left(\sum_{\varphi_4 \text{ is odd}} \right) \longrightarrow \qquad c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle \langle \langle 2 \rangle \rangle \tag{2}
$$

for the same di↵erential flow harmonic *v*⁰

Q-cumulant: 101 times $151, 52$, with the multiparticle correlations being inherently less sensitive to few-particle correlations 10 102 correlations, such as those arising from jet fragmentation and back-to-back-to-back-to-back-to-back-to-back-

$$
\begin{array}{ll}\n\text{\text{\textbullet}} \text{ Q-vector:} & Q_n \equiv \sum_{i=1}^M e^{in\phi_i} & \langle \langle 2 \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle, \quad \text{and} \quad \langle \langle 4 \rangle \rangle = \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle \\
& \Rightarrow \text{Cumulants:} & \mathbf{c}_n \{2\} = \langle \langle 2 \rangle \rangle & \mathbf{c}_n \{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle \cdot \langle \langle 2 \rangle \rangle \\
& \Rightarrow \text{Flow:} & \mathbf{c}_n \{2\} = \sqrt{c_n \{2\}} & \mathbf{c}_n \{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle \cdot \langle \langle 2 \rangle \rangle \\
\text{This is Rev. C 89, 064904 (2014)\n\end{array}
$$
\n
$$
\Rightarrow \text{Differential cumulant:} \quad \frac{d_n \{4\}}{d_n \{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle} \quad \Rightarrow \text{Differential Flow:} \quad v'_n \{4\} = -\frac{d_n \{4\}}{(-c_n \{4\})^{3/4}}
$$
\n
$$
\downarrow
$$
\n
$$
\text{Final observable}
$$

n.

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require **rationize**

- **• 2 subevent can reduce non-flow contribution from within the Jets**
- **3 and 4 subevents can remove back to back contribution** FIG. 5: The *c*²{4} (left panels) and *c*³{4} (right panels) calculated for particles in 0*.*3 < *p*^T < 3 GeV (top panels) or 0*.*5 < *p*^T < 5

 CMS_x

Subevent technique:

w/o subevent

))

2 subevent

2 sub-evt

2 sub-evt

1,)2,)3,)4)

1,)2,)3,)4)

a a bb

<mark>3 </mark>subevent

η

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require **rationize**

- **•** 2 subevent can reduce non-flow contribution from within
- **3 and 4 subevents can remove back to back contribution** FIG. 5: The *c*²{4} (left panels) and *c*³{4} (right panels) calculated for particles in 0*.*3 < *p*^T < 3 GeV (top panels) or 0*.*5 < *p*^T < 5

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require **rationize**

- **•** 2 subevent can reduce non-flow contribution from within $\left\{\frac{1}{2} \right\}$ **Subevent can reduce non-flow contribution from**
 A subsyste son we way hook to book sontw
- **3 and 4 subevents can remove back to back contribution**

Maxime'Guilbaud'–'ISMD'2018 **13)**

 $c₂(4)$

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require **ration**

Method:)

Method:)

- **•** 2 subevent can reduce non-flow contribution from within $\left\{\frac{1}{2} \right\}$ **Subevent can reduce non-flow contribution from**
 A subsyste son we way hook to book sontw
- **3 and 4 subevents can remove back to back contribution**

Maxime'Guilbaud'–'ISMD'2018 **13)**

 $c₂(4)$

CMS,

v_2 {4} in 185 $\leq N_{trk}^{offline}$ < 250 as a function of p_T

[CMS-PAS-HIN-23-002](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIN-23-002/index.html)

- At low p_T , PbPb has larger v_2 {4} than pPb
- At high p_T , similar magnitude and similar trend of subevent $v_2\{4\}$

v_2 {4} in 185 $\leq N_{trk}^{offline}$ < 250 as a function of p_T

[CMS-PAS-HIN-23-002](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIN-23-002/index.html)

- At low p_T , PbPb has larger v_2 {4} than pPb
- At high p_T , similar magnitude and similar trend of subevent $v_2\{4\}$

4 subevent $v_2\{4\}$ in $185 \leq (N_{trk}^{offline}) < 250$

- At low p_T , PbPb has larger v_2 {4} than pPb
- At high p_T , similar magnitude and similar trend of 4 subevent values

4 subevent $v_2\{4\}$ in $185 \leq (N_{trk}^{offline}) < 250$

- At low p_T , PbPb has larger v_2 {4} than pPb
- At high p_T , similar magnitude and similar trend of 4 subevent values

• Similar magnitude and trend for both PbPb and pPb when $p_T^{\rm POI}$ > 6 GeV across all multiplicity bins

 d_2 {4} in HIJING in 60 ≤ (N_{trk}^{gen}) < 120

 d_2 {4} in HIJING in 60 ≤ (N_{trk}^{gen}) < 120

 d_2 {4} in HIJING in 60 ≤ (N_{trk}^{gen}) < 120

 d_2 {4} in HIJING in 60 ≤ (N_{trk}^{gen}) < 120

Summary

- The results of v_2 {4} with subevents for pPb & PbPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV & $\sqrt{s_{NN}}$ = 5.02 TeV, resp.
- **After using subevent to remove nonflow, we have obtained a** significant positive value for $v_2\{4\}$ at high p_T in pPb
- **❖** A striking and surprising similarity in high multiplicity **pPb and peripheral PbPb collisions**
- \diamondsuit **These results provide new information on the interaction** of high- $p_T^{}$ partons with the medium in small system **collisions**

Summary

- The results of v_2 {4} with subevents for pPb & PbPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV & $\sqrt{s_{NN}}$ = 5.02 TeV, resp.
- **After using subevent to remove nonflow, we have obtained a** significant positive value for $v_2\{4\}$ at high p_T in pPb
- **❖** A striking and surprising similarity in high multiplicity **pPb and peripheral PbPb collisions**
- \diamondsuit **These results provide new information on the interaction** of high- $p_T^{}$ partons with the medium in small system **collisions**

 $*$ **Differential cumulant** d_2 {4} calculation in standard and 2 subevent method

Standard (w/o subevent)

$$
d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle
$$

Differential cumulant $d_2(4)$ calculation in standard and 2 subevent method 米

Standard (w/o subevent)

$$
d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle
$$

2 subevent

\mathcal{L} Differential cumulant $d_2\{4\}$ calculation in 3 & 4 subevent method

3 subevent

\mathcal{L} Differential cumulant $d_2\{4\}$ calculation in 3 & 4 subevent method

3 subevent

Rohit Kumar Singh 17

-2.4 -1.2 0 1.2 2.4

η

 $\mathcal{L}_2\{4\}$ with toy model simulation

• Able to extract almost all input v2 with 4 subevent

Supplementry plot

v_2 {4} in different $N_{trk}^{corrected}$ bins with POI p_T > 6 GeV

