

Elliptic Anisotropy at High p_T in pPb Collisions using Subevent Cumulants at CMS

Rohit Kumar Singh

(For the CMS Collaboration)

Indian Institute of Technology Madras

Date: Sept 23, 2024

QGP discovery at RHIC: 2005 - 2006

EVIDENCE FOR A DENSE LIQUID

Two phenomena in particular point to the quark-gluon medium being a dense liquid state of matter: jet quenching and elliptic flow. Jet quenching implies the quarks and gluons are closely packed, and elliptic flow would not occur if the medium were a gas.

M. Roirdan and W. Zajc Scientific American, May 2006

Azimuthal Anisotropy at Low p_T

àeV/c

100

200

 $N_{\text{trk}}^{\text{offline}}$

JHEP 07 (2011) 076

- ****Azimuthal Anisotropy** (v_n) at low p_T (< 3 GeV/c)
 - Discovery of "Ridge" in pPb => sign of collectivity
 - **❖** Geometry + Fluctuations
 - **❖** Well described by hydrodynamics
 - v_2 {4} $\sim v_2$ {6} $\sim v_2$ {8} from cumulant studies

300

100

200

 $N_{\text{trk}}^{\text{offline}}$

Phys. Rev. Lett. 115, 012301 (2015)

300

Nuclear Modification Factor in pPb and PbPb

$$R_{AA} = \frac{N_{particles}^{A+A}}{N_{particles}^{p+p} \times N_{coll}}$$

- R_{AA} shows max suppression in central bins in PbPb
- **�** Weakening of both magnitude and p_T dependence in peripheral bins
- No suppression in 2-10 GeV region in minimum bias pPb
- **�** Weak p_T dependence for $p_T > 10$ GeV
- * pPb: similar system size as peripheral PbPb but no suppression (Caution: Complications from centrality bias factors in pPb)

Nuclear Modification Factor in pPb and PbPb

- R_{AA} shows max suppression in central bins in PbPb
- **\clubsuit** Weakening of both magnitude and p_T dependence in peripheral bins
- No suppression in 2-10 GeV region in minimum bias pPb
- **\rightharpoonup** Weak p_T dependence for $p_T > 10$ GeV
- **PPb:** similar system size as peripheral PbPb but no suppression (Caution: Complications from centrality bias factors in pPb)

See Dener's talk on Jet Quenching in pPb

Azimuthal Anisotropy at High p_T in AA

Phys. Lett. B 776 (2017) 195

- ****** Azimuthal Anisotropy (v_n) at high p_T (> 10 GeV/c) in AA:
 - **Energy loss + Fluctuations, no hydrodynamics**
 - \clubsuit Sensitive to the path length of high p_T parton in QGP medium (Jet Quenching)

Previous Measurements of v_n in pPb at High p_T

10

arXiv:2212.12609

- **2-particle correlation technique (nonflow conta**
- **Template fit method for nonflow subtraction**
- **A** Based on strong assumptions

Previous Measurements of v_n in pPb at High p_T

AMPT string-melting

Jet-particle v_2

Inc. charged-particle v_2

ALICE, p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, 0-10%

Inc. charged-particle v_2

Jet-particle v₂

 $p_{\tau}^{\rm assoc} > 0.5 \, {\rm GeV}/c$

- **2-particle correlation technique (nonflow conta**
- **Template fit method for nonflow subtraction**
- **A** Based on strong assumptions

**** Open questions:**

\Phi What could be the source of observed anisotropy at high p_T in pPb?

***** How can there be a hydro medium that modifies the distribution of final state hadrons yet has no impact on high p_T particle distribution?

Previous Measurements of v_n in pPb at High p_T

AMPT string-melting

Jet-particle v_2

 $p_{-}^{\rm assoc} > 1.0 \, {\rm GeV}/c$

Inc. charged-particle v_2

ALICE, p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, 0-10%

Inc. charged-particle v_2

Jet-particle v2

 $p_{-}^{\text{assoc}} > 1.5 \text{ GeV/}c$

0.15

- **2-particle correlation technique (nonflow conta**
- **Template fit method for nonflow subtraction**
- **A** Based on strong assumptions

**** Open questions:**

- **\Phi** What could be the source of observed anisotropy at high p_T in pPb?
- ***** How can there be a hydro medium that modifies the distribution of final state hadrons yet has no impact on high p_T particle distribution?

- ***** Known to better mitigate nonflow
- First measurement of v_n using subevent cumulant at high p_T in high multiplicity pP

**** Cumulant method:**

- ***** Multiparticle correlation technique
- Non-flow suppression in a data-driven way

$$c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle \langle \langle 2 \rangle \rangle$$

*** Q-cumulant:**

• Q-vector:
$$Q_n \equiv \sum_{i=1}^{M} e^{in\phi_i}$$

$$\langle \langle 2 \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$$
, and $\langle \langle 4 \rangle \rangle = \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle$

=> Cumulants:

•
$$c_n\{2\} = \langle \langle 2 \rangle \rangle$$

•
$$c_n\{2\} = \langle \langle 2 \rangle \rangle$$
 • $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$

=> Flow:

•
$$v_n\{2\} = \sqrt{c_n\{2\}}$$

•
$$v_n\{2\} = \sqrt{c_n\{2\}}$$
 • $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

=> Differential cumulant :
$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$
1 POI 3 RFPs

=> Differential Flow:

$$v_n'\{4\} = -\frac{d_n\{4\}}{(-c_n\{4\})^{3/4}}$$

Phys. Rev. C 89, 064904 (2014)

*** Cumulant method:**

- ***** Multiparticle correlation technique
- Non-flow suppression in a data-driven way

$$c_n\{4\} = \langle\langle 4\rangle\rangle - 2\cdot\langle\langle 2\rangle\rangle\langle\langle 2\rangle\rangle$$

*** Q-cumulant:**

• Q-vector:
$$Q_n \equiv \sum_{i=1}^{M} e^{in\phi_i}$$

$$\langle\langle 2\rangle\rangle = \langle\langle \mathrm{e}^{in(\phi_1 - \phi_2)}\rangle\rangle$$
, and $\langle\langle 4\rangle\rangle = \langle\langle \mathrm{e}^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)}\rangle\rangle$

=> Cumulants:

•
$$c_n\{2\} = \langle \langle 2 \rangle \rangle$$

•
$$c_n\{2\} = \langle \langle 2 \rangle \rangle$$
 • $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2\langle \langle 2 \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$

=> Flow:

•
$$v_n\{2\} = \sqrt{c_n\{2\}}$$

•
$$v_n\{2\} = \sqrt{c_n\{2\}}$$
 • $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

=> Differential cumulant :
$$d_n\{4\} = \langle\langle 4'\rangle\rangle - 2\langle\langle 2'\rangle\rangle \cdot \langle\langle 2\rangle\rangle$$
1 POI 3 RFPs

=> Differential Flow:

$$v_n'\{4\} = -\frac{d_n\{4\}}{(-c_n\{4\})^{3/4}}$$
 Final observable

Phys. Rev. C 89, 064904 (2014)

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require

Pythia 8, pp 13 TeV

p_>0.2 Ge CMS

- 2 subevent can reduce non-flow contribution from within the Jets
- 3 and 4 subevents can remove back to back contribution

CMS

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require

Pythia 8, pp 13 TeV

p_>0.2 G CMS

- 2 subevent can reduce non-flow contribution from within
- 3 and 4 subevents can remove back to back contribution

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require

Pythia 8, pp 13 TeV

p_>0.2 G CMS

- 2 subevent can reduce non-flow contribution from withi
- 3 and 4 subevents can remove back to back contribution

Subevent technique:

In order to further suppress few-particle correlations and to ex signals, we are using subevent cumulant techniques to require

Pythia 8, pp 13 TeV

p_>0.2 G CMS

- 2 subevent can reduce non-flow contribution from withi
- 3 and 4 subevents can remove back to back contribution

Rohit Kumar Singh

8

Results

 $**v_2{4}$ in $185 \le N_{trk}^{offline} < 250$ as a function of p_T

CMS-PAS-HIN-23-002

- At low p_T , PbPb has larger $v_2\{4\}$ than pPb
- At high p_T , similar magnitude and similar trend of subevent $v_2\{4\}$

Results

 $**v_2{4}$ in $185 \le N_{trk}^{offline} < 250$ as a function of p_T

CMS-PAS-HIN-23-002

- At low p_T , PbPb has larger $v_2\{4\}$ than pPb
- At high p_T , similar magnitude and similar trend of subevent $v_2\{4\}$

**** 4 subevent**
$$v_2\{4\}$$
 in $185 \le (N_{trk}^{offline}) < 250$

CMS-PAS-HIN-23-002

- At low p_T , PbPb has larger $v_2\{4\}$ than pPb
- At high p_T , similar magnitude and similar trend of 4 subevent values

**** 4 subevent**
$$v_2\{4\}$$
 in $185 \le (N_{trk}^{offline}) < 250$

CMS-PAS-HIN-23-002

- At low p_T , PbPb has larger $v_2\{4\}$ than pPb
- At high p_T , similar magnitude and similar trend of 4 subevent values

CMS-PAS-HIN-23-002

• Similar magnitude and trend for both PbPb and pPb when $p_T^{\rm POI}$ > 6 GeV across all multiplicity bins

**
$$d_2{4}$$
 in HIJING in $60 \le (N_{trk}^{gen}) < 120$

• HIJING lacks collectivity => used to cross check non-flow subtraction of subevent cumulant

**
$$d_2{4}$$
 in HIJING in $60 \le (N_{trk}^{gen}) < 120$

• HIJING lacks collectivity => used to cross check non-flow subtraction of subevent cumulant

**
$$d_2{4}$$
 in HIJING in $60 \le (N_{trk}^{gen}) < 120$

• HIJING lacks collectivity => used to cross check non-flow subtraction of subevent cumulant

**
$$d_2{4}$$
 in HIJING in $60 \le (N_{trk}^{gen}) < 120$

• HIJING lacks collectivity => used to cross check non-flow subtraction of subevent cumulant

Summary

- **The results of** v_2 {4} with subevents for pPb & PbPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV & $\sqrt{s_{NN}}$ = 5.02 TeV, resp.
- **After using subevent to remove nonflow, we have obtained** a significant positive value for $v_2\{4\}$ at high p_T in pPb
- **A** striking and surprising similarity in high multiplicity pPb and peripheral PbPb collisions
- ***** These results provide new information on the interaction of high- p_T partons with the medium in small system collisions

CMS-PAS-HIN-23-00

Summary

- **The results of** $v_2\{4\}$ with subevents for pPb & PbPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV & $\sqrt{s_{NN}} = 5.02$ TeV, resp.
- **A**fter using subevent to remove nonflow, we have obtained a significant positive value for $v_2\{4\}$ at high p_T in pPb
- **A** striking and surprising similarity in high multiplicity **pPb** and peripheral PbPb collisions
- \clubsuit These results provide new information on the interaction of high- p_T partons with the medium in small system collisions

ありがとう
(Arigatō)

BACK-UP

- * Differential cumulant $d_2\{4\}$ calculation in standard and 2 subevent method
 - Standard (w/o subevent)

$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2\langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$

** Differential cumulant $d_2\{4\}$ calculation in standard and 2 subevent method

Standard (w/o subevent)

$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2\langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$

2 subevent

** Differential cumulant $d_2\{4\}$ calculation in 3 & 4 subevent method

❖ 3 subevent

** Differential cumulant $d_2\{4\}$ calculation in 3 & 4 subevent method

❖ 3 subevent

❖ 4 subevent

** $v_2{4}$ with toy model simulation

• Able to extract almost all input v2 with 4 subevent

Supplementry plot

$**v_2{4}$ in different $N_{trk}^{corrected}$ bins with POI $p_T > 6$ GeV

	pPb		PbPb	
N _{trk} offline range	$\langle N_{ m trk}^{ m offline} angle$	$\langle N_{ m trk}^{ m corrected} angle$	$\langle N_{ m trk}^{ m offline} \rangle$	$\langle N_{ m trk}^{ m corrected} angle$
(0,60)	27	33±1	23	39±2
[60, 120)	83	101 ± 4	87	152 ± 6
[120, 150)	132	160 ± 6	135	233 ± 10
[150, 185)	164	198 ± 7	168	287 ± 12
[185, 250)	202	245 ± 10	216	368±16