Kazuhiro Watanabe (Tohoku Univ, JP)

In collaboration with Greg Jackson (Subatech), Stephane Peigne (Subatech)

Hard Probes 2024@Nagasaki, JP, 09/24/2024

Medium-induced coherent gluon radiation and heavy flavor suppression in pA collisions

Parton energy loss in medium

E-loss happens via scattering with medium or induced gluon radiation:

- \checkmark λ : parton's mean-free path in the medium.
- $\checkmark \mu$: typical momentum transferred from 1 soft scattering.

J. D. Bjorken, FERMILAB-PUB-82-059-THY (1982) M. Gyulassy and X. N. Wang, NPB420, 583-614 (1994)

E-loss is characterized by transport (diffusion) coefficient $\hat{q} = \mu^2 / \lambda$:

 $\checkmark \langle k_{\perp}^2 \rangle \sim \hat{q} t_f$ with $t_f \sim k^+ / k_{\perp}^2$: transverse momentum broadening in the medium.

E-loss in three distinct regimes

Depending on the gluon formation time t_f :

- \Rightarrow Bethe-Heitler regime ($t_f \ll \lambda$): each scattering center acts as an indep. source.
- centers acts as a single radiator.
- centers in the medium act coherently as a source of radiation.

The gluon radiation spectrum:

$$dI = \frac{d\sigma_{\text{rad}}}{d\sigma_{\text{el}}} = \frac{\sum |M_{\text{rad}}|^2}{\sum |M_{\text{el}}|^2} \frac{dk^+ dk_{\perp}^2}{2k^+ (2\pi)^3}$$

 $\omega rac{dI}{d\omega}$

 \Rightarrow Landau-Pomeranchuk-Migdal regime ($\lambda \ll t_f \ll L$): a group of t_f/λ scattering

 \Rightarrow Fully coherent (Long formation time or factorization) regime ($L \ll t_f$): all scattering

Parametric dependence of LPM and FCEL

LPM E-loss (initial state or final state):

✓ Important for hadron production in nuclear DIS, and jet in QGP. \checkmark The fractional E-loss: $\Delta E/E \rightarrow 0$ as $E \rightarrow \infty$.

Fully Coherent E-loss (initial state & final state): $\Delta E_{\rm FCEL} \sim \alpha_s \frac{\sqrt{qL}}{O_{\rm hord}} E$

✓ Important for hadron production in pA collisions. $\checkmark \Delta E/E$ cannot vanish as $E \rightarrow \infty$: important at all energies.

Baier, Dokshitzer, Mueller, Peigne, Schiff, NPB484, 265 (1997) Zakharov, JETP Lett.63, 952 (1996) Wang and Guo, NPA696, 788-832 (2001) Gyulassy, Levai and Vitev, NPB 571, 197 (2000)

$$\langle \epsilon \rangle \sim \alpha_s \hat{q} L^2$$

Setup of FCEL

Forward scattering of fast asymptotic parton with $E(\rightarrow \infty)$ crossing a nuclear medium

- Parent parton from the projectile undergoes:
 - \checkmark single hard scattering with q_{\perp} an exchanged momentum.
 - \checkmark multiple soft scatterings: $l_{\perp}^2 = \left(\sum_{j=1}^{2} \right)^2$

- \clubsuit Hadron of $p'_{\perp} = zK_{\perp}$ is tagged.

$$\sum l_{i\perp}$$
)² ~ $\hat{q}L \ll q_{\perp}^2, K_{\perp}^2$

♣ Radiated gluons: soft ($x = k^+/p^+ \ll 1$) and small angle ($k_\perp \ll k^+$) radiation

Recoiled parton assumed to be soft; kinematics remains the same.

Induced gluon spectrum in LLA

 $Re[(1+2)(3)^*]$ in leading-log approximation (LLA). $(1+2)^2$ and $(3)^2$ cancel out (power suppressed) in $dI/d\omega$.

$$\omega \frac{dI}{d\omega} \bigg|_{2 \to 1} \approx \frac{F_c}{\pi} \frac{\alpha_s}{\pi} \left[\ln \left(1 + \frac{l_{A\perp}^2 E^2}{\omega^2 p_{\perp}^2} \right) - \text{pp} \left(l_{A\perp} \to l_{p\perp} \right) \right]$$

 $F_c = C_R + C_{R'} - C_t$ with R(R'), t being a color rep. of incoming (outgoing) and t-channel particle. Color charge = Casimir.

For massive particle, $p_{\perp} \rightarrow m_{\perp}$

The "induced" k_{\perp} -integrated gluon spectrum $dI/d\omega$, given by interference terms

Arleo, Peigne, Sami, PRD83, 114036 (2011) Peigne, Arleo, Kolevatov, PRD93, 014006 (2016) Munier, Peigne, Petreska, PRD95, 014014 (2017) Armesto, Ma, Martinez, Mehtar-Tani and Salgado, PLB717, 280 (2012)

Induced gluon spectrum for $2 \rightarrow 2$ in LLA (1/2)

global color state R in LLA (Point-like Dijet Approximation) with $\xi \sim 1/2$:

Liou, Mueller, PRD89, no.7, 074026 (2014) Peigne, Kolevatov, JHEP01, 141 (2015) Arleo, Peigne, PRL125, no.3, 032301 (2020) Arleo, Cougoulic, Peigne, JHEP09, 190 (2020)

Simplification: The induced soft gluon cannot probe the dijet constituents but see their

Phenomenology in LLA

$$E\frac{d\sigma_{pA\to h+X}}{d^3p} = A\int_0^{\epsilon_{\max}} d\epsilon$$

Beyond LLA (1/2)

$$\frac{dI}{dx} = \Phi_{\alpha\beta} S(x)_{\beta\alpha} = \text{Tr} \left[\Phi \cdot S(x) \right] \text{ with } x = \omega/E$$

of $2 \rightarrow 2$ amplitudes.

$$\Phi_{\alpha\beta} = \frac{\text{Tr}_{\text{Dirac}}(v_{\alpha}v_{\beta}^{*})}{\text{Tr}_{\text{color}}\text{Tr}_{\text{Dirac}}|M|^{2}}$$

 \clubsuit S : soft color matrix

$$S(x)_{\alpha\beta} \equiv \frac{\alpha_s}{\pi x} \left(\mathscr{L}_{\xi} B_{\alpha\beta} + \mathscr{L}_{\bar{\xi}} \overline{B}_{\alpha\beta} \right)$$

Jackson, Peigne, **KW**, JHEP05, 207 (2024)

Φ : color density matrix, quantifying the entanglement between color components

Beyond LLA (2/2)

$$\frac{dI}{dx} = \Phi_{\alpha\beta} S(x)_{\beta\alpha} = \operatorname{Tr} \left[\Phi \cdot S(x) \right] \quad \text{with} \quad x = \omega/E$$

The soft color matrix S can be cast into:

$$\mathscr{L}_{\xi}B + \mathscr{L}_{\overline{\xi}}\overline{B} = \frac{\mathscr{L}_{\xi}}{\overline{B}}$$

Diagonal color matrix

$$(B_{+})_{\alpha\beta} = \langle \alpha | 2T_{1}(T_{4} + T_{3}) | \beta \rangle = \langle \alpha | 2T_{1}(T_{4} + T_{3}) | \beta \rangle$$

In LLA (Point-like Dijet Approximatic No color transition

 \rightarrow Color transitions ($R \rightarrow R'$)

Jackson, Peigne, **KW**, JHEP05, 207 (2024)

on) with
$$\xi \sim 1/2$$
, $\mathscr{L}_{\xi} \sim \mathscr{L}_{\overline{\xi}} \Longrightarrow B_{-} \sim 0$:

Solution Beyond LLA or $\xi \neq 1/2$, the induced gluon can change the color state of a pair:

Matching with LLA results

dI/dx is independent of the color basis, but S can be diagonalized in some basis.

hannel basis

$$\langle \alpha | = \frac{1}{\sqrt{K_{\alpha}}} \begin{pmatrix} \alpha \\ & \ddots \\ & 1 \end{pmatrix}$$

$$\langle \alpha | = \frac{1}{\sqrt{K_{\alpha}}} \begin{pmatrix} \alpha \\ & \ddots \\ & \ddots \\ & \ddots \\ & 1 \end{pmatrix}$$

$$\rho_{\alpha}^{t} : \text{ probability of the s-channel irreps. } \alpha$$

$$\langle \alpha^{t} | = \frac{1}{\sqrt{K_{\alpha^{t}}}} \begin{pmatrix} \alpha^{t} \\ & \ddots \\ & \ddots \\ & \ddots \\ & 1 \end{pmatrix}$$

$$\langle \alpha^{u} | = \frac{1}{\sqrt{K_{\alpha^{u}}}} \begin{pmatrix} \alpha^{u} \\ & \ddots \\ & \ddots \\ & \ddots \\ & 1 \end{pmatrix}$$

$$\langle \alpha^{u} | = \frac{1}{\sqrt{K_{\alpha^{u}}}} \begin{pmatrix} \alpha^{u} \\ & \ddots \\ & \ddots \\ & \ddots \\ & 1 \end{pmatrix}$$

$$\langle \alpha^{u} | = \frac{1}{\sqrt{K_{\alpha^{u}}}} \begin{pmatrix} \alpha^{u} \\ & \ddots \\ & \ddots \\ & \ddots \\ & 1 \end{pmatrix}$$

 $\rho_{\alpha^{u}}^{u}$: probability of the u-channel irreps. α_{u}

Demonstration: Fully Coherent Energy Loss vs. Gain

Summary

FCEL(G) is significant for all hadron production, including heavy flavors, in pA collisions at all energies:

$$\Delta E_{\rm FCEL} \sim \alpha_s \frac{\sqrt{\hat{q}L}}{Q_{\rm hard}} E \gg \Delta E_{\rm LPM} \sim$$

- Pushing forward precise calculations of the induced gluon radiation spectrum beyond LLA enables us to look into the color transition of a parton pair in the nuclear medium.
- Building a quenching weight from the induced gluon spectrum beyond LLA is underway.
- Stay tuned for improving our predictions beyond LLA!

Thank you!

Backup

Resumming all orders in opacity

$$dI_{\text{induced}} = dI_{pA} - dI_{pp} = \sum_{n=1}^{N} dI^{(n)}$$

At any order in *n* (=opacity: # of scatterings) $x\frac{\mathrm{d}I^{(\tilde{n})}}{\mathrm{d}x} = \frac{\alpha_s}{\pi}\int \frac{\mathrm{d}^2 \mathbf{k}}{\pi} \left[\prod_{i=1}^{\tilde{n}}\int \frac{\mathrm{d}z_i}{N\lambda_g}\int \mathrm{d}^2 \boldsymbol{\ell}_i V(\boldsymbol{\ell}_i)\right] C_{\tilde{n}}(\mathbf{k}, \mathbf{q})$

> Static Coulomb potential: VElastic mean free path: λ_g

The origin of large log

$$\omega \frac{dI}{d\omega} \bigg|_{2 \to 1} \approx F_c \frac{\alpha_s}{\pi}$$

The soft gluon does not probe the relative displacement of the core charge.

shaken off by in-medium scatterings

Transport coefficient

- $l_{\perp}^2 \simeq \hat{q}L$ is the only free parameter in the model.
- Parametrization of the transport coefficient

$$\hat{q} \sim \hat{q}_0 \left(\frac{10^{-2}}{x}\right)^{0.3}$$

- $\hat{q}_0 = 0.07 0.09 \,\mathrm{GeV^2/fm}$: fixed by fitting data
- QCD evolution is not considered for simplicity
- L: determined by Glauber theory
- In the small-*x* limit, we could read $\hat{q}L \sim Q_s^2$, but cannot derive it analytically. Baier, Dokshitzer, Mueller, Peigne and Schiff, NPB484, 265 (1997)

Golec-Biernat and Wusthoff, PRD59, 014017 (1998), PRD60, 114023 (1999) Stasto, Golec-Biernat, Kwiecinski, PRL86, 596 (2001)

Perspectives

- $\chi^2(f'_A | \text{FCEL} \cap \text{LHCb})$ vs. $\chi^2(f_A | \text{no FCEL} \cap \text{LHCb})$
- nPDFs can be reweighed by implementing both FCEL and nPDFs.
- Remark: all hadron production in pA collisions can be affected by nPDFs and FCEL.

Sample: Light hadron production

The suppression patterns depend on R of a produced parton pair.

Arleo, Peigne, PRL125, no.3, 032301 (2020) Arleo, Cougoulic, Peigne, JHEP09, 190 (2020)

