

Understanding initial and final state charm production in pPb collisions with CMS

Soohwan Lee, on behalf of CMS (Korea University)

- Heavy flavor (HF) is great probe to study high-density QCD phenomena
 - Produced in initial hard scattering, $m_{HO} \gg \Lambda_{\rm OCD}$, $m_{HO} \gg T_{\rm c}$, ...
 - Testing our knowledge of HF production in small system crucial to extract hot QCD effect from heavy ion data
 - nPDF, multi parton interaction (MPI), hadronization, ...
 - 2 recent final results from CMS to better understand charm in nuclear collisions
 - Measurement double J/ψ production in pPb **|**)
 - II) Baryon-to-meson ratio of Λ_c^+ and D^0 in pPb

Introduction

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-22-19:00:06.708096 GMT Run / Event / LS: 285726 / 434397940 / 219

- Multi parton scattering is fundamental in hadron collisions
 - Cross section increase with $\sqrt{s_{\rm NN}}$, and the nucleus A

- - - in pPb enhanced by $A + A^{4/3}/\pi \sim 600$

- - - in pPb enhanced by $A + A^{4/3}/\pi \sim 600$

understand parton structure in nucleus and it's geometry

- Multi parton scattering is fundamental in hadron collision
 - Cross section increase with $\sqrt{s_{\rm NN}}$, and the nucleus A
 - For double parton scattering (DPS), production in pPb enhanced by $A + A^{4/3}/\pi \sim 600$
 - Understanding DPS process in nuclear collision can help understand parton structure in nucleus and it's geometry
 - Simple DPS cross section can be formulated in purely geometric approach

$$\sigma_{\text{DPS,pPb}} = \left(\frac{1}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pPb} \to J/\psi + X} \sigma_{\text{SPS}}^{\text{pPb} \to J/\psi + X}}{\sigma_{\text{eff,pPb}}}$$
(General expression in [1]) (Serves as (

This work: extracting $\sigma_{\rm eff,pPb}$ from di-J/ ψ measurement

[1] DESY-THESIS 154 pp. (2019)

- pPb (Pbp) $\sqrt{s_{NN}}$ = 8.16 TeV data collected in 2016
 - Integrated luminosity: 174.56 nb^{-1}
- Leptonic decay channels of J/ψ considered
 - $J/\psi + J/\psi \rightarrow 4\mu$ (1)
 - $J/\psi + J/\psi \rightarrow \mu\mu + ee$ (2)
- 2D fit on mass distribution to extract signal
 - (1): 8.5 ± 3.4 (stat.)
 - (2): 5.7 \pm 4.0 (stat.)
 - Combined with Fischer formalism, signal 5.3 σ !

Double J/ψ production in pPb

- pPb (Pbp) $\sqrt{s_{NN}}$ = 8.16 TeV data collected in 2016
 - Integrated luminosity: 174.56 nb^{-1}
- Leptonic decay channels of J/ψ considered
 - $J/\psi + J/\psi \rightarrow 4\mu$ (1)
 - $J/\psi + J/\psi \rightarrow \mu\mu + ee$ (2)
- 2D fit on mass distribution to extract signal
 - (1): 8.5 ± 3.4 (stat.)
 - (2): 5.7 \pm 4.0 (stat.)
 - Combined with Fischer formalism, signal 5.3 σ !
 - Total systematic 6.1 %

- Extracted DPS cross section correspond to $\sigma_{\rm eff,pPb}$
 - Data compatible with SPS only

Extracting $\sigma_{\rm eff}$

- SPS/DPS signal extracted from template fits
- $N_{\text{SPS}} = 6.4 \pm 4.2$

•
$$N_{\rm DPS} = 2.1 \pm 2.4$$

- Fiducial σ (nb) (see back up)
- $\sigma_{\text{SPS}}^{\text{pPb}\to J/\psi J\psi + X} = 16.5 \pm 10.8 \text{ (stat)} \pm 0.1 \text{ (syst)}$

$$\sigma_{\text{DPS}}^{\text{pPb}\rightarrow\text{J/}\psi\text{J}\psi+X} = 5.4 \pm 6.2 \,(\text{stat}) \pm 0.4 \,(\text{syst})$$

Theoretical prediction of SPS σ from HELAC-ONIA + CT14nlo PDF, reweighted to EPPS16 nPDF

Theoretical cross section Process $\sigma_{\rm SPS}^{\rm pPb\to J/\psi+X}\mathcal{B}(J/\psi\to\mu^+\mu^-)$ $4.51 \pm 0.42 \,\mu b$ $\sigma^{\mathrm{pPb} \to \mathrm{J/\psi J/\psi + X}}_{\mathrm{SPS}} \mathcal{B}^2(\mathrm{J/\psi} \to \mu^+\mu^-)$ $20.2^{+38.5}_{-13.1}\,\mathrm{pb}$

$$= 0.53^{+\infty}_{-0.2}$$
 b

- Equivalent pp $\sigma_{\rm eff}$ extracted assuming purely geometric effect (no parton correlation) $\sigma_{\rm eff} = \frac{\sigma_{\rm eff,pA}}{A - \sigma_{\rm eff,pA} F_{\rm pA} / A}$
 - A = 208, $F_{pA} = 29.5 \text{ mb}^{-1}$ (from Glauber MC)

• $\sigma_{\text{eff}} = 4.0^{+\infty}_{-1.5} \text{ mb} \rightarrow \sigma_{\text{eff}} > 1.0 \text{ mb} \text{ at } 95 \% \text{ C.L.}$

Result

• Equivalent pp $\sigma_{\rm eff}$ extracted assuming purely geometric effect (no parton correlation) $\sigma_{\rm eff} = \frac{\sigma_{\rm eff,pA}}{A - \sigma_{\rm eff,pA} F_{\rm pA} / A}$

• A = 208,
$$F_{pA} = 29.5 \text{ mb}^{-1}$$
 (from Glauber MC)

- $\sigma_{\text{eff}} = 4.0^{+\infty}_{-1.5} \text{ mb} \rightarrow \sigma_{\text{eff}} > 1.0 \text{ mb} \text{ at } 95 \% \text{ C.L.}$
- Compatible with pp di-quarkonium results
 - Difference between measurement suggest DPS may depend on flavor/final state
 - Difference from nuclear gluon PDF?

Result

Probing final state charm production via baryon to meson ratio

- Λ_c^+ over D^0 ratio measured to study hadronization mechanism
 - Enhancement of baryon in central PbPb collision, coalescence in action
 - Study baryon to meson ratio in high multiplicity pPb collision for final state modification in small system!

- CMS 8.16 TeV pPb (Pbp) collision data from 2016
 - Measured produced baryon to meson ratio Λ_c^+ / D^0 in spectrum of p_T and reconstructed track multiplicity ($N_{\rm trk}^{\rm offline}$)

Analyzed Λ_c^+ and D^0 (and their charge conjugate)

Reconstruction of Λ_c^+ from decay mode

$$\Lambda_c^+ \to \mathrm{K}^0_\mathrm{S}(\to \pi^+\pi^-) \mathrm{p}$$

BR ~ 1.59 % (
$$K_{\rm S}^0 \to \pi^+ \pi^-$$
 BR ~ 69.2 %)

Signal enhanced via MLP leveraging candidate kinematics and proton dE/dx

Reconstruction of D^0 from decay mode

$$D^0
ightarrow K^- + \pi^+$$
 BR ~ 3.94 %

Signal enhanced via BDT

Candidates built from all possible n-track combinations

Analysis method

- Raw yield extracted from extended maximum likelihood fit.
 - Λ_c^+ prompt fraction (f^{prompt}) estimated from FONLL + LHCb Λ_b^0 data (A scaled)
 - DCA based template fit to extract f^{prompt} for D^0 result

• Selected Λ_c^+ candidates with $|M_{\pi+\pi-} - M_{K_s^0}| < 0.02 \text{ GeV}$, $|M_{K_s^0p} - M_{\Lambda_c^+}| < 0.2 \text{ GeV}$, $|M_{K^-\pi^+} - M_{D^0}| < 0.2 \text{ GeV}$ for D^0

- Ratios of high and low multiplicity result compatible, decreasing with increasing $p_{
 m T}$
 - Clear difference in trend for 3 GeV compared to strange sector \rightarrow flavor dependent mechanism in roll

Results

17

- High multiplicity pPb collision data comparable to semi-central PbPb
 - Also comparable to pp, large deviation seen only in central PbPb collision
- Ratio converges to same slope in higher $p_{\rm T} \rightarrow \,$ less sensitivity to surrounding for fast escaping particles

18

- Comparison of ratio from strange sector show flatter trend for charm consistent with ALICE result
 - Different hadronization timing (earlier for HF)?

Summary

- Associated production of charmonium via $J/\psi + J/\psi$
 - Independent extraction of $\sigma_{\rm eff}$, compatible with pp result
 - Room for improvement with better statistical power
- Heavy quark hadronization in dense final state?
 - Coalescence maybe only in scene for c quark in central nuclear collision
 - Recent data suggest hadronization in action in earlier stage than light quarks

Future works

- LHCb study on associated ${
 m D}^0$ production in pPb measures $\sigma_{
 m eff,pp}$
 - Limit for pure geometric approach
 - J/ψ - D^0 vs. D^0D^0 , forward/backward difference
 - Another way of probing transverse gluon PDF (shadowing)

Double heavy flavor production study in pPb collision continues ... Better statistical power with D^0 ? Stay tuned for future CMS results!

Back up

Analysis fiducial region

Particle	Fiducial
Muons	$p_{\rm T} > 3.4$
	$p_{\rm T} > 3.3$
	$p_{\rm T} > 5.5$
	$p_{\rm T} > 1.3$
I/11 mesons	$n_{\rm T} > 6.5$

- Fiducial σ (nb)
- $\sigma_{\text{SPS}}^{\text{pPb} \to J/\psi J\psi + X} = 16.5 \pm 10.8 \text{ (stat)} \pm 0.1 \text{ (syst)}$
- $\sigma_{\text{DPS}}^{\text{pPb} \to J/\psi J\psi + X} = 5.4 \pm 6.2 \text{ (stat)} \pm 0.4 \text{ (syst)}$

requirement

- GeV for $|\eta| < 0.3$ GeV for $0.3 < |\eta| < 1.1$ 5–2.0 $|\eta|$ GeV for 1.1 < $|\eta|$ < 2.1 GeV for $2.1 < |\eta| < 2.4$
- J/ ψ mesons $p_{\rm T} > 6.5 \,\text{GeV}$ and |y| < 2.4

23

Back up

c vs. b

