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In contrast to usual HEP, time and distance are relevant variables in heavy-ion collisions 
Measure time evolution - in equilibrium and out of equilibrium

Velocity fields 
fully developed
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Figure 3: (Color online) (a) RAA(pT ), (b) vSP2 (pT ), (c) vSP3 (pT ) for the 20–30% centrality class of
p
sNN = 2.76 TeV

Pb-Pb collisions at the LHC compared to their respective experimental data [34, 57–59]. The blue solid, ⌧q = 0 fm,
dotted green, ⌧q = 0.197 fm, and dashed-dotted purple, ⌧q = 0.572 fm, lines correspond, respectively, to Cases i), ii) and
iii) of the early times treatment. DSS07 [48] FFs and Tq = Tchem = 175 MeV are used.

out strongly suppressing the energy loss for the
first ⇠ 0.6 fm after the collision. This work clearly
shows that exploiting the versatility of jet quench-
ing to access di↵erent time-scales o↵ers unique
possibilities to improve our understanding of the
initial stages in heavy-ion collisions, and is ex-
tendable from large to small systems.
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Appendix A. Additional checks

Di↵erent centralities:. We have investigated the
e↵ect of the cut in time for di↵erent centrality
classes. The results for RAA(pT ) and vSP

2 (pT )
for the 0–10% and 40–50% centrality classes of

p
sNN = 2.76 TeV Pb-Pb collisions at the LHC

are shown, respectively, in Fig. A.1 and Fig. A.2.
For both centrality classes, we consider again the
three early times extrapolations: ⌧q = 0 fm,
⌧q = 0.197 fm and ⌧q = 0.572 fm, taking DSS07
[48] FFs and Tq = Tchem = 175 MeV. The cor-
responding central values of the K-factor are, re-
spectively, 2.12, 2.79 and 4.12 for the 0–10% cen-
trality class and 2.14, 3.10 and 5.27 for the 40–
50% centrality class, in line with the findings in
[38]. The improvement in the description of v2
with increasing ⌧q is manifest.

Energy loss modeling:. We have examined the ef-
fect of using a di↵erent energy loss model. Within
the same formalism of the QWs, we have changed
the approximation used to compute the radiation
spectrum from multiple soft scatterings to a sin-
gle hard scattering, that is, the N = 1 opacity
limit (taking R̄ = R/3 and !̄c = !c/3, see [35]
and also [24]). Note that the perturbative tails
largely di↵er between these two approximations.
We show in Fig. A.3 the results for RAA(pT ) and
vSP
2 (pT ) for the 20–30% centrality class of

p
sNN =

2.76 TeV Pb-Pb collisions at the LHC in the sin-
gle opacity approximation, together with the ones
in the multiple soft scattering approximation for
⌧q = 0 fm, ⌧q = 0.197 fm and ⌧q = 0.572 fm (us-
ing DSS07 [48] FFs and Tq = Tchem = 175 MeV).
The corresponding central values of the K-factor
for the the N = 1 opacity curves are 2.80, 3.80
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Can we access the initial stages with jet quenching?

Salgado Research proposal [Part B2] YoctoLHC
The gaussian approximation, correct in the asymptotically large number of scatterings, neglects the 
perturbative, power-law, tails of the individual elastic cross section. Including them has been technically 
difficult as no analytic solution of the path integrals exists. The main advantage of the opacity expansion is 
that these perturbative tails are easily included, but only reduced number of terms, often only one, is included 
in the series. Interestingly, the gaussian approximation is valid in strongly couple systems with no 
quasiparticles, computed using the AdS/CFT correspondence [‑ ], while the presence of perturbative tails 24
would indicate quasiparticles in the QGP. Proposals to identify (large angle) Molière scattering to look for 
the scale in which a quasiparticle description of the QGP is valid have been put forward [‑ ], although no 25
experimental data have been able to find this behaviour yet.  
The technology outlined above allows one, in principle, to compute any number of medium-induced radiated 
gluons. In practice, n-gluon radiation needs 2n-point functions and the medium averages rapidly become too 
cumbersome. For this reason, multiple medium-induced gluons are resummed in the small formation time 
limit, ! , valid for a large enough medium length L, as an iteration of the single-inclusive kernel [‑ ]. 26
The final result of this formalism can be recast into an energy loss probability distribution, ! , that 
depends on the medium properties, in particular the transport coefficient !  and the length L. In 
phenomenological applications a way to extract the information from the medium is to consider ! , 
where, for the case of a thermalised system, LO perturbative calculations lead to an estimate ! . 
The local energy density !  is then taken from hydrodynamical simulations of heavy-ion collisions so that 
there is only one parameter, ! , to be fitted to the experimental data at large transverse momentum. We have 
performed such an analysis of experimental data from RHIC and LHC at different centralities [‑ ] with an 27
unexpected result: by fitting the K-factor for each energy and centrality we obtain different results for 
different energies but these results are nearly independence of centrality. This result is very puzzling, as 
naively there is an overlap of medium thermal properties (temperature or energy density) in central RHIC 
AuAu collisions and semi-peripheral LHC PbPb collisions — see Fig. 1. Taken at face value, this result 
would indicate that the jet quenching parameter does not simply depend on the local properties of the 
medium. Similar results has been obtained in basically all studies of data that assume a local and 
monotonous dependence of  the medium parameter with the medium properties [‑ ]. Another long-standing 28
puzzle of jet quenching data is the small value of !  when comparing jet quenching calculations to data. 
Different solutions have been proposed but all of them require either a delay time for the interaction of the jet 
and the medium to start [‑ ] (see Fig.2) or a very strong increase of !  for temperatures close to the 29
deconfinement temperature !  [‑ ].  30

�

There is, at present, no consensus on the interpretation of these findings, but they seem to be very generic of 
any implementation of energy loss. Both interpretations, a delay effect in the energy loss of the jet in the 
medium or a non trivial temperature dependence demonstrate the power of jet quenching measurements to 
study the time-evolution of the medium. In technical terms, both imply that the simple procedure described 
above to perform the medium averages needs a profound reformulation. 
In a recent paper [‑ ] in collaboration with Liliana Apolinário, Guilherme Milhano and Gavin Salam, we 31
presented a proof-of-concept to show how jet quenching measurements can be used as a chronometer of the 
medium evolution. For that we studied the hadronically-decaying W bosons, in particular in events with a 
top-antitop quark pair. The corresponding chain of decays ( ! ) provide the unique feature of a 
time delay between the moment of the collision and that when the W-boson decay products start interacting 
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Fig.2 (Left) Energy density distribution in a typical event in hydrodynamical approaches for two different times, ~0.2 
fm and ~1 fm. (Right) effect on v2 for single inclusive hadrons of a delay in the time in which the jet starts to interact 
with the medium. 
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Phenomenological analyses need delay time in energy loss to fit RAA and v2 simmultaneously 
Would Flow/gratient effects at late times modify this conclusion?
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Is there an interplay between time evolution 
properties (velocity fields, gradients…) and jets 

developping in the medium?

[So that we can measure these properties with jet 
observables for different times]



medium-induced asymmetries in realigned jet samples, similar to the analysis
of elliptic flow in realigned event samples [47, 48]. In addition, however, the
kT -ordering of the DGLAP parton shower implies that the first parton split-
ting in the shower contains significantly more transverse momentum than the
second, thus leading to a dynamical asymmetry in the η×φ-plane. Both effects
lead to a symmetry breaking in a random direction in the η × φ-plane - thus
rotational symmetry is restored in sufficiently large jet samples. To search for
symmetry breaking effects caused by collective motion in η×φ-distributions of
jet energy and jet multiplicity, it is thus important to control experimentally
the direction of this collective motion. Based on these arguments, we foresee
two classes of applications for our calculations:

Jet

flow field

time

long

A A

(a)

A

(b)

A

Fig. 2. Schematic view of two scenarios in which jets interact with collective
flow fields: a) If the hard parton is not produced in the Lorentz frame longitudinally
comoving with the medium, or if the longitudinal collective flow does not show
Bjorken scaling, then the parton interacts with a flow component parallel to the
beam. b) On its propagation in the transverse direction, hard partons generically
test transverse flow components, except for the special trajectories which are parallel
to the flow field.

First, in general, a hard parton needs not be produced in the Lorentz frame
which is longitudinally comoving with the medium; and even if it is produced
in the longitudinally comoving frame, it will in general not stay in this frame
during the entire time evolution of the medium. This is so since the hard
parton moves – like any effectively massless particle – on a straight light-like
line in the (z, t)-diagram, whereas the collective flow field is expected to show
significant deviations [49, 50] from Bjorken expansion and will thus intersect
this straight line. In such cases, the collective component of the momentum
transfer to the hard parton is directed along the beam axis. Hence, averaged
samples of medium-modified jet shapes and jet multiplicities can be expected
to show an asymmetry which is preferentially oriented along the beam direc-
tion in the η × φ-plane. [At mid-rapidity, the jet sample must be symmetric
with respect to the η → −η mirror symmetry, but – in general – it will not

4

20 yrs ago… [rather ad-hoc implementation]
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In the absence of a medium, the parton fragments ac-
cording to the vacuum distribution Itot = Ivac. The
radiation spectrum (4) characterizes the medium modi-

fication of this distribution ω dItot

dω dk = ω dIvac

dω dk + ω dImed

dω dk .
From this, we calculate distortions of jet energy and jet
multiplicity distributions [23]. Information about Ivac is
obtained from the energy fraction of the jet contained in
a subcone of radius R =

√

η2 + φ2,

ρvac(R) ≡
1

Njets

∑

jets

ET (R)

ET (R = 1)

= 1−
1

ET

∫

dω

∫ ω

dkΘ

(

k

ω
−R

)

ω
dIvac

dω dk
. (5)

For this jet shape, we use the parametrization [24] of
the Fermilab D0 Collaboration for jet energies in the
range ≈ 50 < Et < 150 GeV and opening cones 0.1 <
R < 1.0. We remove the unphysical singularity of this
parametrization for R → 0 by smoothly interpolating
with a polynomial ansatz for R < 0.04 to ρ(R = 0) = 0.
We then calculate from eq. (4) the modification [23] of
ρvac(R) caused by the energy density and collective flow
of the medium. To do so, we transform the gluon emis-
sion angle arcsin (k/ω) in (4) to jet coordinates η, φ,

k dk dα = ω2 cosφ

cosh3 η
dη dφ , (6)

where α denotes the angle between the transverse gluon
momentum k and the collective flow component q0. In
what follows, we mainly focus on changes of the jet shape
due to longitudinal collective flow effects where the di-
rected momentum transfer q0 points along the beam di-
rection. The sensitivity of jets and leading hadron spec-
tra to other collective flow components will be discussed
elsewhere [25].
To specify input values for the momentum transfer

from the medium, we make the following considera-
tions. First, for a given density n0 of scattering cen-
tres, the transport coefficient is given as q̂ ≃ n0 µ2,
see Ref. [22]. Thus, according to (2), the hard parton
suffers a momentum transfer that is monotonously in-
creasing with the pressure in the medium, n0 µ2 ∝ p3/4

and which tests the components T⊥⊥ and T zz (z par-
allel to the beam) of the energy momentum tensor (1).
In the presence of a longitudinal Bjorken-type flow field

uµ =
(

1, β⃗
)

/
√

1− β2, the longitudinal flow compo-

nent increases from T zz = p to T zz = p + ∆p, where
∆p = (ϵ + p)uz uz = 4 p β2/(1 − β2) for the equation of
state of an ideal gas, ϵ = 3 p. For a rapidity difference
η = 0.5, 1.0, 1.5 between the rest frame, which is longitu-
dinally comoving with the jet, and the rest frame of the
medium, this corresponds to an increase of the compo-
nent T zz by a factor 1, 5, 18, respectively. We expect that
the collective flow component q0 rises monotonously with

the flow-induced∆p, as µ does with p. This suggests that
q0 lies in the parameter range q0 >∼µ.
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FIG. 1: Upper part: sketch of the distortion of the jet energy
distribution in the presence of a medium with or without col-
lective flow. Lower part: calculated distortion of the jet en-
ergy distribution (5) in the η × φ-plane for a 100 GeV jet.
The right hand-side is for an average medium-induced radi-
ated energy of 23 GeV and equal contributions from density
and flow effects, µ = q0. Scales of the contour plot are visible
from Fig. 2.

In Fig. 1, we show the medium-modified jet shape for a
jet of total energy ET = 100 GeV. To test the sensitivity
of this energy distribution to collective flow, we have cho-
sen a rather small directed flow component, q0 = µ. The
effective coupling constant in (3), n0 Lαs CR = 1, the
momentum transfer per scattering centre µ = 1 GeV,
and the length of the medium L = 6 fm were adjusted

such that an average energy ∆ET =
∫

dω dImed

dω = 23
GeV is redistributed by medium-induced gluon radia-
tion. Previous studies indicate that this value of ∆ET

is a conservative estimate for the modification of jets
produced in Pb+Pb collisions at the Large Hadron Col-
lider LHC [23]. Despite these conservative estimates,
the contour plot of the jet energy distribution in Fig. 1
displays marked medium-induced deviations. First, the
jet structure broadens because of the medium-induced
Brownian motion of the partonic jet fragments in a dense
medium [22]. Second, the jet shape shows a marked ro-
tational asymmetry in the η × φ-plane, which is charac-
teristic of the presence of a collective flow field.
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What is the effect of the velocity fields and 
the (density/temperature) gradients in jet 

quenching observables?



Collective flow induces quenching (?)
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With this input, we calculate the characteristic gluon energy and average
transverse momentum squared for a parton trajectory (5.8) in a medium char-
acterized by its density distribution (5.10) and its collective flow field (5.12).
With the ansatz (5.9) for the BDMPS transport coefficient, we find

ωc(r0,ϕ) =
∫

∞

0
dξ ξ q̂(ξ)Ω(r(ξ), ξ) , (5.14)

(q̂L) (r0,ϕ) =
∫

∞

0
dξ q̂(ξ)Ω(r(ξ), ξ) . (5.15)

For a qualitative estimate of the size of parton energy loss, one can use the
pocket formula ∆E ≈ αsωc [29]. This motivates to investigate ωc(r0,ϕ) as a
function of the production point r0 of the hard parton for different orientations
ϕ of the parton trajectory. As seen from (5.9), ωc depends linearly on qnf and
on the relative flow strength qf/qnf . As this flow strength is increased, ωc

increases for parton trajectories which are not parallel to the flow field. Thus,
the distortions seen in Fig. 10 provide a first indication of the extent to which
parton energy loss depends on a transverse flow field and affects the azimuthal
distribution of inclusive hadron spectra.

Fig. 11. The dependence of elliptic flow v2 and the non-flow component of the
BDMPS transport coefficient qnf on the relative flow strength qf/qnf , for the case
of a nuclear modification factor RAA = 0.5 in semi-peripheral Au+Au collisions.
The calculation is done at fixed transverse momentum pT = 7 GeV.

To estimate the effects of transverse flow, we have calculated from (5.14) and
(5.15) the relative suppression of hadronic spectra due to medium-induced
parton energy loss

23

Contribution to elliptic flow (II): Néstor Armesto

• Flow effect clear in the param-
eters which determine E-loss:
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• Exercise for semi-peripheral AuAu:
N(x0, y0, θ, pT ) = dσmed

dpT

/
dσvac

dpT
, pT =

5 GeV/c (Salgado, Wiedemann, ’03),

• Effect on v2 is not large, (Wang, ’03; Drees,
Feng, Jia, ’03); flow effects may mimic a
higher density.

Flow effects on jet profiles and multiplicities: 2. Exercises: RHIC: elliptic flow. – p.9

Nestor Armesto talk Hard Probes 2004

component of the energy-momentum tensor (1.2). To be more specific, we
consider the component T n⊥n⊥ where n⊥ is orthogonal to the trajectory (5.1)
of the hard parton,

T n⊥n⊥ = p(ϵ) + [ϵ+ p(ϵ)]
β⃗2
⊥

1− β2
. (5.6)

Here, β⊥ is the spatial component of the collective flow field which is orthog-
onal to the parton trajectory. In general, all quantities entering (5.6) will de-
pend on space and time. In the absence of flow effects, β⊥ = 0, the component
T n⊥n⊥ = p determines the pressure and hence it determines via the equation
of state the energy density ϵ(p) entering (5.2) and (5.3). For finite flow β⊥,
our proposal is to use ϵ(T n⊥n⊥) instead of ϵ(p) in evaluating the characteristic
gluon energy and momentum broadening,

q̂ = c ϵ3/4(p) −→ q̂ = c ϵ3/4(T n⊥n⊥) . (5.7)

This is consistent with what is known from analytical estimates and numeri-
cal studies about the dependence of parton energy loss on momentum transfer
from the medium. For the determination of jet asymmetries in a dynami-
cal scenario, relation (5.6), one has to determine the relative strength of the
random and directed momentum transfers in (2.3). For a viable model, q0/µ

should increase monotonically with ϵ+p(ϵ)
p(ϵ)

β⃗2
⊥

1−β2 .

B. Low-pT elliptic flow induces high-pT azimuthal asymmetry

In general, a hard parton will suffer less energy loss if it propagates on a trajec-
tory parallel to the flow field. Thus, for the same medium-induced suppression,
the azimuthal asymmetry at high transverse momentum becomes larger when
the contribution of the collective flow field is increased. To estimate the size
of this effect, we consider a simple two-dimensional model. The hard parton
is produced at an arbitrary position (x0, y0) in the transverse plane according
to the nuclear overlap. It propagates in its longitudinally comoving rest frame
in the transverse direction n⃗ = (cosϕ, sinϕ), along the trajectory

r0(ξ) = (x0 + ξ cosϕ, y0 + ξ sinϕ) . (5.8)

For simplicity, we assume that the longitudinally comoving rest frame of this
hard parton is the longitudinal rest frame of the medium. Then, there is only a
transverse but not a longitudinal flow component. For the BDMPS transport
coefficient which includes collective flow effects, we make the ansatz

20
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Here, β⊥ is the spatial component of the collective flow field which is orthog-
onal to the parton trajectory. In general, all quantities entering (5.6) will de-
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to the nuclear overlap. It propagates in its longitudinally comoving rest frame
in the transverse direction n⃗ = (cosϕ, sinϕ), along the trajectory

r0(ξ) = (x0 + ξ cosϕ, y0 + ξ sinϕ) . (5.8)

For simplicity, we assume that the longitudinally comoving rest frame of this
hard parton is the longitudinal rest frame of the medium. Then, there is only a
transverse but not a longitudinal flow component. For the BDMPS transport
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Proposal was to define  with the 
boosted component of 

̂q
Tμν

[Majumder, Muller, Bass 2007 propose ]̂qμν
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Fig. 3. (Colour online) Structures of jet-induced medium response in (a) Coupled Jet-Fluid model, (b) Coupled LBT-Hydro, (c) LBT
model, and (d) BAMPS. Adapted from Refs. [26, 27, 35, 9].

Fig. 4. (Colour online) Nuclear modification factor for jet shape function in central Pb+Pb collisions at 2.76 A TeV from (a) Coupled
Jet-Fluid model, (b) LBT model, (c) MARTINI, and (d) JEWEL. (a), (c), and (d) are the results for inclusive jet, and (b) is the result
for γ-jet. Adapted from Refs. [26, 35, 22, 36].

with hydrodynamic medium response and from LBT with recoils are shown in Fig. 5. The contribution of
the hydrodynamic medium response in Fig 5 (a) becomes larger by increasing the value of r and finally
dominates the jet shape in the large-r region (r > 0.5). The result with the hydrodynamic medium response
provides a good description of the experimental data from CMS [37]. The recoil contribution in Fig 5 (b)
shows the similar behavior and significantly broadens the jet shape in a wide range of r.

The jet broadening due to the medium response effect can be seen also in the cone-size dependence of
jet energy loss. Shown in Figure 6 (a-1) is the average pjet

T loss from Coupled Jet-Fluid model. The amount
of the pjet

T loss with the hydrodynamic medium response is smaller than that without the hydrodynamic
medium response. The similar recovery of jet energy is shown in the results from LBT model with the
recoil effect [Fig. 6 (a-2)]. We can also see the increase of the cone size dependence due to the contribution
of the hydrodynamic medium response in Fig. 6 (a-1): large jet cones catch more energy and momentum
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Fig. 5. (Colour online) Jet shape function in central Pb+Pb collisions at 2.76 A TeV for (a) subleading jet in dijet events from Coupled
Jet-Fluid model, and for (b) γ-jet from LBT model. Adapted from Refs. [26, 20].
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In-medium parton propagation
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Scattering amplitudes
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Color dipole - The simplest configuration
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Medium averages needed - model of the medium
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Medium averages
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A recoil-less medium  a collection of static scattering centers∼

1
N2 − 1

Tr ⟨WA(x)WA(y)⟩ = exp {−
1
2 ∫

t

t0

ds n(s) σ(x − y)}
σ(r) = ∫q

|v(q) |2 (1 − eiqr)

Discretization

{{☐ ☆ &{¥{☒ # ☒
Expansion in
scattering centers

nls)5(r ) ≈ f- § r2G
harmonic oscillator

Dipole cross section

In the harmonic approximation S(x?,y?) ' exp
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q
q2S(q)

Where the second moment of the distribution defines the jet quenching parameter
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Medium-induced radiation
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[Zakharov, Baier, Dokshitzer, Mueller, Peigne, Schiff, Wiedemann, Gyulassy, Levai, Vitev, and many others… starting in the mid-90’s] 

For fluctuation with  the gluon is 
resolved: medium-induced radiation  
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Heavy quark radiation
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Heavy quark radiation
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uµ = (1, u, uz)

The medium is modeled by a field created by a classical current of sources

Background color field

Heavy sources 

controls the jet-medium interaction

controls de inhomogeneity

4

velocity of the sources

The stochastic field can be written as

µ

gAaµ(q) =
X

i

uµ
i e

�iq·xi tai vi(q) (2⇡)�(q0 � q · u� qzuz)

With gradients and velocity fields

[Stolen from Xoan Mayo - previous talk]

NOW WITH VELOCITY FIELDS
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“Directional broadening”
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where u · p ⌘ uµpµ ' E � u · p and p0 ⌘ E. In this work, we will keep the subeikonal

terms only if they are length enhanced, and treat the leading powers of
m
E within a separate

expansion [is that enough?].

One may further notice that the main modification to the massless case comes through

the LPM phases and arguments of the potentials. Focusing on the latter ones, we find it

becomes anisotropic in the massive case:
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where v(q,x, z) ⌘ v
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q2 + m2

E2 (u · q)2 ,x, z
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Squaring the re-summed amplitude and introducing a two-point function of the effec-

tive single-particle propagators WL(p,pin; p̄, p̄in) =
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where the interaction kernel is given by
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With this expression in hand, one may readily find the leading moments of the final

state momentum distribution. For instance, the tensorial generalization of jet quenching

parameter reads
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where q̂0 = E2

E2�m2
Cg4⇢(L)

4⇡ log
⇣

E
µ

⌘
is the regular jet quenching parameter in the absence of

gradients, and including the multiplicative mass modification. [State the approximations

explicitly – small grads, no subeikonal terms, etc.]

Thus, ...

III. RADIATION AT FINITE MASS
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4

The broadening is given by the average of two path integrals 

The resummation of multiple scatterings can be done with

… and the kernels …
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The information from these expressions can be encoded 
computing the (generalized) jet quenching parameter
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[Also considered in Hauksson, Iancu (2023) and Barata, Salgado, Silva (2024) - see next talk!] 
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We can now also define a tensorial jet quenching parameter
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resulting in g ' 2.8rT
T , and, for simplicity, we will use g = 3rT

T for all our estimates.

The medium induced soft gluon spectrum has an angular dependence controlled by g ·k,

and we will focus on the two limiting cases, when the angle between the two vectors, ✓, is

either 0 or ⇡. We will measure the gluon frequencies with respect to the critical medium

frequency !c ⌘ q̂L2
' 125 GeV, which in the case of no gradients can be identified with

the typical frequency for gluons with formation length of the order of L. We will also

introduce a dimensionless gradient parameter �T = |rT/T 2
|, which controls the strength of

the hydrodynamic gradients and distribution anisotropy.

FIG. 2: The medium induced soft gluon spectrum is given for three gluon energies, ! = 0.04!c,

! = 0.06!c, and ! = 0.08!c. The solid lines denote the spectrum in the homogeneous limit. The

dashed and dash-dotted lines correspond to the full spectrum with gradients along (✓ = 0) and

opposite to (✓ = ⇡) the direction of k respectively. The gradients are quantified with �T = 0.05

(left) and �T = 0.01 (right).

In Fig. 2, we show the full spectrum up to first order in gradient corrections for ! =

0.04!c, ! = 0.06!c, and ! = 0.08!c, further differentiating for �T = 0.05 (left) and

�T = 0.01 (right). For ✓ = 0, the gradient effects suppress the gluon radiation at small

values of k, while when ✓ = ⇡, it is enhanced. One can notice that the gradient effects

in Fig. 2 become stronger for softer gluons, and may be substantial even for sufficiently

small �T . This behavior is in line with the properties of the gradient effects in broadening

[38], where the anisotropic contributions are suppressed by the energy of the leading parton.

Since the energy of soft emitted gluons is smaller than the energy of the leading parton, the

gradient effects become more important. However, one should notice, that very soft gluons

19

m=0 
[Xoan’s talk]
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Gradients (T, density, etc…) and flow velocities modify jet properties —broadening 
and medium-induced radiation

Softer particles are bent in the gradient / velocity direction - effect is subleading in energy 
Additional source of energy loss that could be very important phenomenologically (  vs ) 

For the massive case
Jet quenching parameter becomes a tensor both for broadening and radiation 
Some observable consequences in the next talk by João Silva 
Dead cone effect is then also directional - mass effect in radiation depends on the relative direction of the 
propagation of the quark and the fluid velocity

RAA v2
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