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Heavy flavor in heavy-ion collisions

® Heavy-flavor quarks are mostly produced at the very
early stage of the collision

® They traverse the medium while interacting with it
® They explore every stage of the medium evolution

MADAI Collaboration, H Petersen, J Bernhard
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RAA and Vo

® Two principal observables are the nuclear modification factor Ry4 and the
elliptic flow coefficient v,

e Usually anincrease in HQ interaction strength leads to a lowering of Ry4 and an
enhancement in v, making it difficult to simultaneously describe both
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The random walk of charm

® The propagation of charm quarks can be considered a random walk
® |n the hydrodynamic phase, it can be described in a Fokker Planck or Langevin
approach
dp; = —Apidt + &(p)dt
® The physical parameters are the drag and diffusion coefficients

® The diffusion coefficient is related to fluctuation by the fluctuation-dissipation
theorem,

(€i(Dg(t)) = Boyo(t — 1)
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The pre-equilibrium phase

® The pre-equilibrium is the least understood
phase, both in terms of the charm
interactions and the background medium

¢ A dynamical description is provided by the
IP-Glasma model B. Schenke, P. Tribedy, R. Venugopalan,
PRL (2012)

® Color field fluctuations are sampled using the
saturation scale obtained from the IP-Sat
model H. Kowalski, D. Teaney, PRD (2003)

® The color fields are evolved using the
classical Yang-Mills equations

Dy, F*¥) = J”
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® The charm could be in a
hotspot in pre-equilibrium
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Does pre-equilibrium energy loss matter?

® Heavy-quark interactions in the pre-equilibrium phase are often ignored

® The lifetime of the phase was considered too short to have any important
phenomenological implications

® Also, it is challenging to model HQ energy loss in pre-equilibrium phase. One
approach is to consider it as a classical colored particle in Glasma fields.
Another is to evolve charm in the QCD kinetic theory

J.-H. Liu, S. K. Das, V. Greco, M. Ruggieri, PRD (2021); M. E. Carrington, A. Czajka, S. Mrowczynski, PRC (2022); X.Du,
arxiv:2306.02530; K. Boguslavski, A. Kurkela, T. Lappi, F. Lindenbauer, J. Peuron, PRD (2024); L. Backfried, K.
Boguslavski, P. Hotzy, arxiv:2408.12646 H. Pandey, S. Schlichting, S. Sharma PRL (2024); D. Avramescu, V. Greco, T.
Lappi, H. Mantysaari, D. Muller, arxiv:2409.10564; ...
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Our motivation

® The question we aim to answer is if pre-equilibrium energy loss coupled with
realistic HQ evolution in hydrodynamic medium, affect the observables

® Can we get a rough estimate of the magnitude of this effect?

Some simplifications

¢ \We define a temperature from the local energy density in the glasma phase
using an ideal-gas equation of state

® The HQ evolution in this “thermalized” glasma is described by the Langevin
equation

¢ \We used a boost-invariant background for the medium with a non-boost
invariant HQ distribution
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Our framework

Brownian motion of HQ Fragmentation + Coalescence Mechanisms
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Diffusion rates from lattice
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R, and v> from lattice rates
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® Sizeable effect at larger momentum
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® D-mesons hadronized by fragmentation only
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Momentum dependence

® |attice does not provide pr dependence of interaction strength

® Parameterized momentum dependence from pQCD calculations. Matched to

lattice results at pr — 0
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With pr dependent interactions and coalescence
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® The momentum dependence of dissipation coefficients can be tuned to obtain

a better fit

® The pre-equilibrium energy loss seems to be causing enhancement! How is that

possible?
Vanderbilt University
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Can pre-equilibrium energy loss cause
enhancement?

e Large diffusion at very early times can rearrange the rapidity of charm quarks
e |arge kicks change the direction of low-pr quarks changing their rapidity
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Rapidity dynamics
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® The flow is not significantly affected
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Summary and Outlook

® Pre-equilibrium energy loss can have significant and counter-intuitive effects
on charm observables

® The rapidity dynamics is the most significant cause of surprising enhancement
¢ Will depend on details of momentum dependent rates, hadronization mechanism
® Can be leveraged to better tune the transport coefficient

® The calculation can be generalized to include a full 3D background

® Other methods can be used to model early time energy loss in this setup
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