

Quarkonium production in proton-proton and Pb–Pb collisions with ALICE

Yiping Wang on behalf of the ALICE Collaboration

University of Science and Technology of China 12th Int Conf on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Study quarkonium in pp:

- Distinguish among the quarkonium production models in pp; refine QCD based models :
 - **NRQCD**: Non-Relativistic QCD approach, long-distance matrix elements (LDME) fitted to experimental data.
 - NRQCD+CGC: Color Glass Condensate effective theory coupled to leading order NRQCD calculations.
 - **ICEM**: using the $k_{\rm T}$ -factorization approach to improve Color Evaporation Model (CEM).
- Reference for interpreting results obtained in Pb–Pb collisions.

NRQCD: Phys. Rev. D51 (1995) 1125–1171 NRQCD+CGC: JHEP 01 (2014) 056 ICEM: Phys. Rev. D 94 no. 11, (2016) 114029

Quarkonium as a probe of QGP in Pb-Pb

• Suppression of the direct charmonium due to color screening and dissociation.

- Recombination enhanced the charmonium production close to the transition at LHC energies.
- ψ(2S) production relative to J/ψ in Pb–Pb collisions has a strong discriminating power between different regeneration scenarios.

24/09/24

Quarkonium production in proton-proton and Pb–Pb collisions with ALICE

Phys. Lett.B 178 (1986) 416–422 Phys. Rev. Lett. 92 (2004) 212301 Phys. Lett. B 490 (2000) 196–202 Phys. Rev. D 64 (2001) 094015 Nucl. Phys. A 943 (2015) 147–158

Quarkonium measurements with ALICE detector

Time Projection Chamber Tracking, particle identification

Inner Tracking System Tracking, vertex reconstruction

Centrality determination triggering, and reaction plane measurement

Muon spectrometer Trigger and tracking for muons

Measured $p_{\rm T}$ can be down to 0

- Precise measurements of inclusive J/ ψ production at pp 13 TeV at both midrapidity and forward rapidity, $p_{\rm T}$ down to 0.
- FONLL is used to calculate non-prompt contribution.
- Measurement uncertainty is lower than most model uncertainties. All models describe data reasonably.

Quarkonium production in proton-proton and Pb–Pb collisions with ALICE

^{24/09/24}

$J/\psi p_T$ spectrum in pp collisions at $\sqrt{s} = 13.6$ TeV

- Measurement of inclusive J/ ψ production in pp 13.6 TeV collisions at midrapidity, $p_{\rm T}$ down to 0.
- Significant improvement in statistics for Run 3.
- All models describe data reasonably.

24/09/24

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

24

2.2

ALI-PREL-548566

2.6 2.8

3 3.2 3.4 3.6 3.8

See poster by Y. Zhang

 m_{ee} (GeV/ c^2)

- **First measurement** of $\psi(2S)$ in central barrel in ALICE.
- $\psi(2S)$ -to-J/ ψ ratio measurements at midrapidity and forward rapidity.
- ICEM reproduce measurements reasonably over full $p_{\rm T}$ range.

24/09/24

• The results from different energies and rapidity intervals are consistent.

24/09/24

J/ ψp_T spectrum in Pb–Pb collisions $\sqrt{s_{NN}} = 5.02$ TeV

Phys. Lett. B 849 (2024) 138451

- Measurement of inclusive J/ ψ production at Pb–Pb 5.02 TeV, p_T down to 0.
- SHMc underestimates data at high $p_{\rm T}$; two transport model agree with data over full $p_{\rm T}$ range.

24/09/24

Quarkonium production in proton-proton and Pb–Pb collisions with ALICE

•

- Phys. Lett. B 849 (2024) 138451
- $R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{\mathrm{d}^2 N_{AA} / dy dp_{\mathrm{T}}}{\mathrm{d}^2 \sigma_{\mathrm{pp}} / dy dp_{\mathrm{T}}}$

24/09/24

needed to constrain models.

Stronger regeneration in central collisions at midrapidity.

All three model calculations show good agreement with data at midrapidity.

More precise experimental inputs (total charm cross-section/shadowing) are

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

ALI-PUB-568084

Significant suppression at $p_{\rm T} > 5$ GeV/*c* for both forward and midrapidity.

Phys. Lett. B 849 (2024) 138451

- Stronger regeneration at midrapidity in low $p_{\rm T}$ range in central collisions.
- More precise experimental inputs (total charm cross-section/shadowing) are needed to constrain models at low $p_{\rm T}$.

24/09/24

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

- Decreasing trends of $\langle p_T \rangle$ and r_{AA} from peripheral to central with ALICE \rightarrow Regeneration at low p_T
- $\langle p_{\rm T} \rangle$ increases with collision energy.
- r_{AA} below unity indicates a softening $J/\psi p_T$ shape in Pb–Pb collisions compared to pp collisions. 24/09/24 Quarkonium production in proton-proton and Pb–Pb collisions with ALICE 11

Centrality dependence of R_{AA} and double ratio of $\psi(2S)$ -to-J/ $\psi(2S)$

- Flat centrality dependence for both $\psi(2S) R_{AA}$ and $\psi(2S)$ -to-J/ ψ (double) ratio at the LHC.
- $\psi(2S)$ is more suppressed.
- SHMc underestimates the $\psi(2S)$ R_{AA} and $\psi(2S)$ -to-J/ ψ ratio in central collisions; TAMU agrees with data. 24/09/24 Quarkonium production in proton-proton and Pb-Pb collisions with ALICE 12

$p_{\rm T}$ dependence of $R_{\rm AA}$ and double ratio of $\psi(2S)$ -to-J/ ψ

- $\psi(2S)$ shows a stronger suppression over the full $p_{\rm T}$ range.
- Lower suppression at low $p_T \rightarrow$ regeneration.
- Measurements agree with CMS measurements and TAMU model.

24/09/24

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

- inclusive $J/\psi v_2$ vs. p_T using Event-Plane at forward rapidity in ALICE Run 3.
- v_2 results are compatible within uncertainties between the two energies.

Event-Plane:

 $v_n = <\cos[n(\varphi - \Psi_n)] > /R_n \{EP\}$

See poster by C. Zhang

14

^{24/09/24}

First look of X(3872) at low $p_{\rm T}$.

- ~ 40% pp 13.6TeV data
- $\psi(2S)$ and X(3872) using J/ $\psi\pi^+\pi^-$ channel at pp 13.6 TeV with ALICE Run 3.

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

^{24/09/24}

Summary

• Inclusive J/ψ in pp and Pb–Pb:

- Provides important constraints to QCD models and a reference for investigating the QGP.
- Stronger regeneration observed in low $p_{\rm T}$ in Pb–Pb.
- Double ratio of $\psi(2S)$ -to-J/ ψ :
 - Stronger suppression of $\psi(2S)$ compared to J/ψ , by a factor ~ 2.
 - TAMU model describes data well; SHM model qualitatively agree with data.

• Outlook:

- There is going to be more precise measurements in Run 3.
- First look of X(3872) at low p_T for the first time with ALICE.

Thanks

24/09/24

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

Backup

24/09/24

Quarkonium production in proton-proton and Pb-Pb collisions with ALICE

Comparison of J/ψ yield between mid and forward rapidity

19

- Larger J/ ψ production at high p_T at mid-rapidity. A steep decrease towards forward rapidity
- Both NRQCD+CGC and ICEM models are compatible due to large uncertainties.

24/09/24

Quarkonia measurements with ALICE detector

• Ongoing analysis of inclusive $J/\psi v_2$ vs. p_T at forward rapidity in ALICE Run 3.

See poster by C. Zhang