Bayes-DREENA: Integrated QGP Parameter Inference from High-pt and Low-pt Data Magdalena Djordjevic,

In collaboration with: Bithika Karmakar, Dusan Zigic, Jussi Auvinen, Igor Salom, Marko Djordjevic, and Pasi Huovinen

C European Research Council

1

МИНИСТАРСТВО ПРОСВЕТЕ, АУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА

Motivation

- Energy loss of high-pt light and heavy particles traversing the QCD medium is an excellent probe of QGP properties.
- Theoretical predictions can be compared with a wide range of data from different experiments, collision systems, collision energies, centralities, and observables.
- Can be used with low-pt theory and experiments to study the properties of created QCD medium, i.e., for precision QGP tomography.

The dynamical energy loss formalism

Has the following unique features:

- *Finite size finite temperature* QCD medium of *dynamical* (moving) partons.
- Based on finite *T* field theory and generalized HTL approach.
- Same theoretical framework for both radiative and collisional energy loss.
- Applicable to both light and heavy flavor.
- Finite magnetic mass effects (M. D. and M. Djordjevic, PLB 709:229 (2012))
- Running coupling (M. D. and M. Djordjevic, PLB 734, 286 (2014)).
- Relaxed soft-gluon approximation (B. Blagojevic, M. D. and M. Djordjevic, PRC 99, 024901, (2019)).
- Included higher-order in opacity effects (S. Stojku, B. Ilic, I. Salom, MD, PRC in press, (2023)).
- No fitting parameters in the model.
- Temperature as a natural variable in the model.

A realistic description for parton-medium interactions!

Suitable for QGP tomography!

4

Part I: Can we use dynamical energy loss to constrain η/s ?

- Low- p_{\perp} observables are widely used to explore the bulk QGP properties.
- η/s is well constrained by Bayesian analyses in the low- p_{\perp} sector in the temperature range $T_c \lesssim T \lesssim 1.5T_c$, but weakly constrained at larger temperatures.
- QGP is expected to behave as a weakly interacting gas Weakly coupled.
- Fluid dynamics predicts the η /s to be very low Strongly coupled.
- QGP may behave as perfect fluid near T_c (soft regime), and η/s may increase at high temperatures (hard regime).
- Testing the soft-to-hard hypothesis is difficult: Anisotropy is weakly affected by the η/s at high temperatures.
- High- p_{\perp} data/theory can serve as a complementary tool.
- Can we constrain η/s by using the dynamical energy loss?

Constraining η/s from the dynamical energy loss \hat{q}

Dynamical energy loss:

Derivation of \hat{q} from the dynamical energy loss

• In dynamical perturbative QCD medium, the interaction between high-pt partons and QGP constituents can be characterized by:

$$\frac{d\Gamma_{el}}{d^2q} = 4C_A \left(1 + \frac{nf}{6}\right) T^3 \frac{\alpha_s^2}{q^2 \left(q^2 + \mu_E^2\right)}$$

• After including running coupling and finite magnetic mass, the elastic collision rate becomes:

$$\frac{d\Gamma_{el}}{d^2q} = \frac{C_A}{\pi} T\alpha(ET) \frac{\mu_E^2 - \mu_M^2}{(q^2 + \mu_E^2)(q^2 + \mu_M^2)}$$

• Debye mass is obtained by self consistently solving the following equation (W-Lambert function (Peshier, hep-ph/0601119):

$$\mu_E^2 = \left(1 + \frac{n_f}{6}\right) 4\pi \alpha \left(\mu_E^2\right) T^2 \qquad \mu_E = \sqrt{\Lambda^2 \frac{\xi(T)}{W(\xi(T))}} \\ \alpha(t) = \frac{4\pi}{(11 - \frac{2}{3}n_f)} \frac{1}{\ln\left(\frac{t}{\Lambda^2}\right)} \qquad \xi(T) = \frac{1 + \frac{n_f}{6}}{11 - \frac{2}{3}n_f} \left(\frac{4\pi T}{\Lambda}\right)^2$$

In the fluid rest frame, weakly dependent on E!

$$\hat{q} = \int_{0}^{\sqrt{6ET}} d^{2}q \, q^{2} \cdot \frac{d\Gamma_{el}}{d^{2}q} = C_{A}T\alpha(ET) \int_{0}^{6ET} dq^{2} \, q^{2} \left(\frac{1}{q^{2} + \mu_{M}^{2}} - \frac{1}{q^{2} + \mu_{E}^{2}}\right) = C_{A}T\alpha(ET) \left(\mu_{E}^{2} \ln\left[\frac{6ET + \mu_{E}^{2}}{\mu E^{2}}\right] - \mu_{M}^{2} \ln\left[\frac{6ET + \mu_{M}^{2}}{\mu_{M}^{2}}\right]\right)$$

• In the limit of $ET \rightarrow \infty$, reduces to the expression independent of jet energy: $x_{ME} = \mu_M/\mu_E$

$$\hat{q} = C_A \left(\frac{4\pi}{11 - \frac{2}{3}n_F}\right)^2 \frac{4\pi \left(1 + \frac{n_F}{6}\right)}{W(\xi(T))} \left(1 - x_{ME}^2\right) T^3$$

• **Expected behavior:** as a property of the medium \hat{q} should be independent (or weakly dependent) on jet energy.

B. Karmakar, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and MD, PRC **108**, 044907 (2023).

7

What we expect from previous knowledge?

- Sensitive to the coupling strength in QGP: weak coupling enlarges η/s and reduces $\frac{\hat{q}}{T^3}$, and vice versa for strong coupling.
- A rise in $\frac{\hat{q}}{T^3}$ near T_c is predicted to be essential for explaining high-p₁ v₂. (Liao&Shuryak, PRL 102, 2009).
- In the weakly coupled regime (Majumder, Muller, Wang, PRL 99, 2007) $\eta/s \approx 1.25 \frac{T^3}{\hat{a}}$.
- At large *T*, weakly coupled system.
- Near T_c , strongly coupled limit, and $\frac{T^3}{\hat{q}}$ should significantly deviate from η/s .
- **Soft-to-hard boundary:** the transition region from strong to weak coupling.

 η /s and $\frac{\hat{q}}{T^3}$ are key transport coefficients in QGP.

B. Karmakar, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and MD, PRC 108, 044907 (2023).

B. Karmakar, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and MD, PRC **108**, 044907 (2023).

 $\frac{\hat{q}}{T^3}$ shows expected behavior, i.e., enhanced quenching near *Tc*.

The enhancement arises from chromoelectric and chromo-magnetic interplay, absent in static models, underscoring dynamic medium importance in energy loss calculations.

Comparison with Bayesian analyses and Summary of Part I

- η/s shows surprisingly good agreement all the way to T_c with constraints extracted from existing Bayesian analyses. (i.e., it falls precisely in the overlap of the two intervals).
- This agreement is surprising, as near T_c we expect divergence due to strong coupling.
- While the extended agreement supports our dynamical energy loss model's predictive ability, it raises a question about the absence of expected behavior.
- It is unlikely that the weak coupling regime would extend down to Tc.
- Instead, it was proposed that $\eta/s \approx 1.25 \frac{T^3}{\hat{q}}$ holds as long as the quasiparticle picture of QGP is applicable., a condition also necessary for the accuracy of energy loss calculations, such as our dynamical model.
- **Intriguing hypothesis:** The quasiparticle picture remains valid at the entire temperature range.
- This obscures estimation of the soft-to-hard boundary, a major unresolved issue.

B. Karmakar, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and MD, PRC 108, 044907 (2023).

Part II: Can we use high-pt theory and data to extract the bulk QGP parameters through Bayesian statistics?

The main idea behind high-pt QGP tomography

DREENA-A framework as a QGP tomography tool

To use high pt data/theory to explore the bulk QGP:

- Include any, arbitrary, medium evolution as an input.
- Preserve all dynamical energy loss model properties.
- Develop an efficient (timewise) numerical procedure.
- Generate a comprehensive set of light and heavy flavor predictions.
- Compare predictions with the available experimental data.
- If needed, iterate a comparison for different combinations of QGP medium parameters.
- Extract medium properties consistent with both low and high-pt theory and data.

Develop fully optimized DREENA-A framework.

DREENA: Dynamical Radiative and Elastic ENergy loss Approach; A: Adaptive temperature profile. D.Zigic, I.Salom, J.Auvinen, P.Huovinen, M. Djordjevic Front.in Phys. 10(2022) 957019

Optimized to incorporate any arbitrary event-by-event fluctuating temperature profile. D.Zigic, J.Auvinen, I.Salom, M. Djordjevic, P.Huovinen Phys.Rev.C 106 (2022) 4, 044909

DREENA-A is available on http://github.com/DusanZigic/DREENA-A

Exploring bulk QGP properties through DREENA

Constrained the early evolution of QGP.

S. Stojku., J. Auvinen, M. Djordjevic, P. Huovinen and MD, Phys. Rev. C Lett. **105**, L021901 (2022).

Proposed a new observable to constrain QGP anisotropy

S. Stojku, J. Auvinen, L. Zivkovic, P. Huovinen, MD, Physics Letters B **835**, 137501 (2022).

Probed the shape of the QGP droplet with ebeDREENA

B. Karmakar, D. Zigic, P. Huovinen, M. Djordjevic, MD, and J. Auvinen, arXiv: 2403.17817 (PRC in press)

Formal framework for DREENA Bayesian inference

- Weassume TRENTo with p=0, and run (2+1)-dimensional fluid dynamical model (VISHNew) with no free streaming.
- Generated latin hypercube with 200 points, with norm, τ and η/s in the following ranges:
 - $-\tau$: 0.2-1.3 fm
 - Constant $\eta/s: 0.02-0.2$
 - Norm: 60-360

All other parameters are as in PRC **108**, 044907 (2023).

- For each set of parameters, we run average medium evolutions with TRENTo+ VISHNew, to generate low-pt predictions and *T* profiles as an input for DREENA-A.
- Run DREENA-A with these *T* profiles to generate high-pt predictions.
- Statistical inference framework (previous slide) is then employed with these
 predictions either on only low-pt experimatal data, or jointly on low-pt and high-pt
 experimental data.

Marginal distribution of parameters obtained with Bayesian inference of low-pt data

M. Djordjevic, D. Zigic, I. Salom, and MD, to be submitted (2024).

Prior vs. posterior: low-pt data

M. Djordjevic, D. Zigic, I. Salom, and MD, to be submitted (2024).

Prior vs. posterior: high-pt data

Marginal distribution of parameters obtained with Bayesian inference of both low-pt and high-pt data

M. Djordjevic, D. Zigic, I. Salom, and MD, to be submitted (2024).

Prior vs. posterior: low-pt data

M. Djordjevic, D. Zigic, I. Salom, and MD, to be submitted (2024).

Prior vs. posterior: high-pt data

Comparison of parameter distributions from low-pt and joint-pt Bayesian inferences

Inclusion of high-pt data significantly narrows the distributions of parameters!

High-pt data are necessary for precision extraction of bulk QGP parameters!

Overall, jet tomography is crucial for constraining QGP properties!

Summary: Optimizing QGP Parameter Extraction

• Unifying low-pt and high-pt theory and data with advanced Bayesian statistics significantly improves constraints on QGP properties. High-pt data from RHIC and LHC were underutilized for this purpose, and this approach enables their optimal use.

What do we need from the experimental data at the LHC and RHIC in the highprecision era to accurately extract QGP parameters?

- Improved agreement between different experiments within the LHC.
 - Precise extraction of QGP parameters is challenging if the data from different experiments agree within large error bars.
- Precise measurements for high-pt D meson R_{AA} , v_2 , and higher harmonics.
- Precise measurements for at least B meson high-pt R_{AA} and v_2 data.
 - Due to heavy mass (the dead cone effect), B mesons provide an independent variable, offering a much better constraint on QGP parameters. Models must simultaneously explain both low and high-pt data, and within high-pt data, they need to explain for both light and heavy flavor.

Conclusion: A joint effort between theorists and experimentalists will be essential to precisely extract the properties of this extraordinary new form of matter.

Canyon of river DREENA in Serbia

Established by the European Commission

25