



## Measurements of charmonium production in heavy-ion collisions by STAR



Wei Zhang (South China Normal University) (for the STAR Collaboration)

2024/9/24

#### Introduction

Quarkonia suppression was proposed as a sensitive probe to QGP properties

- Dominantly produced before QGP formation
- ➢ Hot medium effects
  - Dissociation(color screening and dynamic interaction)
  - Regeneration
- Cold nuclear matter effects
  - nPDF
  - Nuclear absorption
- > Other effects
  - Comover interactions
  - Feed-down contribution



Credit: Q. Yang

 $R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{nn}/dy dp_T}$ 

Wei Zhang @ HP2024



#### 2024/9/24

E (GeV/fm<sup>3</sup>)

W'

 $\lambda_{\rm D}$ 

Wei Zhang @ HP2024

#### 1.2 0

• Collision energy dependence

Systematically analyze

 $0.2T_{c} \quad 0.74T_{c} \quad 1.1T_{c}$ 

Xb

 $\chi_{\rm c}$ 

S. Diagl, P. Petreczky and H. Satz, PLB514, 57 (2001)

Y(3S)

- $p_{\rm T}$  and centrality dependence
- Binding energy dependence

Xb

Y(2S)

 $J/\psi$ 



 $2.3T_{c}$ 

Y(1S)





### **STAR** Detector





- Time Projection Chamber
  - Tracking
  - Momentum and energy loss
  - Acceptance:  $|\eta| < 1.5; \ 0 \le \phi < 2\pi$

#### Time Of Flight Detector

- Time of flight
- Particle identification
- Acceptance:  $|\eta| < 1$ ;  $0 \le \phi < 2\pi$

#### Barrel ElectroMagnetic Calorimeter

- $e^{\pm}$  trigger
- Particle identification with deposited energy
- Acceptance:  $|\eta| < 1$ ;  $0 \le \phi < 2\pi$

#### Collision Energy Dependence: BES-I $\rightarrow$ BES-II





#### $\succ$ BES-I → BES-II

- 10-20 times higher statistics than BES-I
- Enables differential measurements at low collision energies

# Energy Dependence of Inclusive J/ $\psi R_{AA}$





X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication). L. Kluberg, Eur. Phys. J. C 43 (2005) 145.

- → J/ψ R<sub>AA</sub> at  $\sqrt{s_{NN}}$  = 14.6, 17.3, 19.6 and 27 GeV follow global trend
- No significant energy dependence of J/ψ R<sub>AA</sub>
  in central collisions is observed within
  uncertainties up to 200 GeV
- The observed energy dependence is qualitatively described by the transport model

# Centrality Dependence of Inclusive J/ $\psi R_{AA}$





Hint of decreasing trend as a function of centrality

> R<sub>AA</sub> shows no significant energy dependence at RHIC for similar <N<sub>part</sub>>

Wei Zhang @ HP2024

 $p_{\rm T}$  Dependence of Inclusive J/ $\psi R_{\rm AA}$ 





 $\geq$  R<sub>AA</sub> increases with  $p_{\rm T}$  for  $\sqrt{s_{NN}} = 14.6, 17.3, 19.6$  and 27 GeV

 $\succ$  No significant  $p_{\rm T}$  dependence at 200 GeV

# Binding Energy Dependence in Isobar Collisions STAR



- > High statistics enables measurements of:
  - Sequential suppression of J/ $\psi$ ,  $\psi(2S)$ ,  $\Upsilon(1S)$ ,  $\Upsilon(2S)$

 $\succ$  Hint of sequential suppression for  $\Upsilon(1S)$  and  $\Upsilon(2S)$  in Isobar and Au+Au collisions

#### $\psi(2S)$ Signal in Zr+Zr & Ru+Ru Collisions



- A machine learning method is employed to  $\succ$ reconstruct the  $\psi(2S)$  signal
- $\blacktriangleright$  First observation of  $\psi(2S)$  in heavy-ion collisions at RHIC





# $\psi(2S)$ to J/ $\psi$ Ratio in Zr+Zr & Ru+Ru Collisions





collisions at RHIC  $(3.5\sigma, 0-80\%)$ 

## Double Ratio





 $\gg \psi(2S)$  over J/ $\psi$  double ratio is smaller than that in p+A collisions

≻ Hint of ratio decreasing towards central collisions

### Double Ratio





Centrality dependence trend seems to be more similar to that at SPS than at LHC

 $\psi(2S)$  to J/ $\psi$  Ratio vs  $p_{T}$ 





- $\succ \psi(2S)$  to J/ψ ratio increases with  $p_T$  in isobaric collisions
- ➤ Significantly lower than that in p+p and p+A collisions at p<sub>T</sub> < 2 GeV/c</p>

STAR, Phys.Rev.D 100 (2019) PHENIX, Phys.Rev.D, 85,092004 (2012) HERA-B, Eur.Phys.J.C 49 (2007) E789, Phys.Rev.D 52 (1995) 1307, 1995.





- Significant suppression of charmonium in central heavy-ion collisions at RHIC
- > No significant collision energy dependence of  $J/\psi R_{AA}$  at RHIC
- > Hint of decreasing with centrality and increasing with  $p_T$  for J/ $\psi$  R<sub>AA</sub> at low energies
- ➢ First observation of charmonium sequential suppression at RHIC
- > Interplay of dissociation, regeneration and cold nuclear matter effects
- Can be used to constrain QGP properties



# Back up

# Raw J/y Signal







- The function used to fit UL-Sign (UL) consists of
  - $J/\psi$  template
  - combinatorial background
  - residual background
- Extracted combinatorial background shape from mixed-event UL-Sign.
- Residual background parameterized using a firstorder polynomial.

2024/9/24

### Inclusive J/ $\psi$ Invariant Yields



$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$



Inclusive J/ $\psi$  invariant yields as a function of  $p_T$  at mid-rapidity (|y| < 1) in Au+Au collisions at  $\sqrt{s_{NN}} = 14.6, 17.3, 19.6, 27$  GeV.

Wei Zhang @ HP2024

### Systematic Uncertainty



Systematic uncertainty from J/ $\psi$  yield measurements Source:

Track quality cuts

- *n*HitsFit
- *n*HitsDedx
- Dca (cm)

Signal extraction

- $J/\psi$  templates
- Fitting range
- Residual background function form
- Combinatorial background function form
- Bin Width

Electron identification cuts

- $n\sigma_e$  efficiency
- $1/\beta$  efficiency
- TOF Matching efficiency

| Analyzed bin | 27 GeV | 19.6 GeV | 14.6 GeV | 17.3GeV |
|--------------|--------|----------|----------|---------|
| 0-80%        | 12.4 % | 11.2 %   | 13.2 %   | 12.8 %  |
| 0-20%        | 13.2 % | 12.3 %   | 13.1 %   | 13.8 %  |
| 20-40%       | 12.1 % | 11.5 %   | 15.0 %   | 17.7 %  |
| 40-60%       | 11.5 % | 11.6 %   | 13.5 %   | 13.9%   |
| 60-80%       | 14.4 % | 16.1 %   |          |         |
| 0-1GeV/c     | 12.8 % | 12.5 %   | 14.6 %   | 14.7 %  |
| 1-2GeV/c     | 14.4 % | 11.6 %   | 12.7 %   | 14.7 %  |
| 2-4GeV/c     | 11.6 % | 15.0 %   | 24.1 %   | _       |









| $\sigma_{\text{inelastic}}$ (mb) | Error                                                                                                                  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| 43.3960                          | 0.766915                                                                                                               |  |
| 32.9876                          | 0.163660                                                                                                               |  |
| 32.0776                          | 0.137064                                                                                                               |  |
| 31.7791                          | 0.131443                                                                                                               |  |
| 31.4194                          | 0.125273                                                                                                               |  |
| 30.9905                          | 0.124518                                                                                                               |  |
| 30.6478                          | 0.130914                                                                                                               |  |
|                                  | σ <sub>inelastic</sub> (mb)      43.3960      32.9876      32.0776      31.7791      31.4194      30.9905      30.6478 |  |

Data from PDG (Particle Data Group) : https://pdg.lbl.gov/2022/hadronic-xsections/