

g ⇒ ccbar - quenching enhanced radiation, formation time, and all that ...

Hard Probes, Nagasaki, Japan

Urs Achim Wiedemann 24 Sept 2024

based on:

M. Attems, J. Brewer, G.M. Innocenti, A. Mazeliauskas, S. Park, W.v.d. Schee, U.A. Wiedemann, JHEP 01 (2023) 080

M. Attems, J. Brewer, G.M. Innocenti, A. Mazeliauskas, S. Park, W.v.d. Schee, G. Soyez, U.A. Wiedemann, **PRL 132 212301 (2024)**

J. Brewer, W.v.d. Schee, U.A. Wiedemann, in preparation

Heavy flavor production as a long distance process

 $\left. \hat{\sigma}^{gg \to c\bar{c}X} \right|_{\substack{\longrightarrow \\ Q_{c\bar{c}}^2 \ll \hat{s}}} \hat{\sigma}^{gg \to gX} \frac{\alpha_s}{2\pi} \frac{1}{Q_{c\bar{c}}^2} P_{g \to c\bar{c}} \right.$

□ g -> c cbar is <u>long-distance</u>. Formation time is **boosted**

Collinear limit

 $au_{g \to c \bar{c}} \sim \frac{1}{Q_{c \bar{c}}} \frac{E_g}{Q_{c \bar{c}}}$

□ g-> c cbar medium-modified if boosted sufficiently

- ccbar enhancement in jets
- momentum broadening of c-cbar pair ...

What we have calculated ...

time

time

2Re

000000000000000000

Medium-modified g-> c cbar splitting function* in Baier-Dokshitzer-Mueller-Peigné-Schiff / Zakharov formalism

Confirms formation time estimate

$$\tau_{g \to c\bar{c}} = \frac{2}{Q} \frac{E_g}{Q}$$

□ Sensitive to color field strength of medium

$$\hat{q} \equiv rac{\langle \mathbf{q}^2 \rangle_{\mathrm{med}}}{\lambda_{\mathrm{mfp}}}$$

Numerically sizeable for
$$\langle \mathbf{q}^2 \rangle_{\mathrm{med}} = \int_{\tau_i}^{\tau_f} d\tau \hat{q}(\tau) \sim \mathcal{O}(m_c^2)$$

Geometrically enhanced power-correction

$$P_{g o q \bar{q}}^{\mathrm{med}} \sim \mathcal{O}\left(rac{\langle \mathbf{q}^2
angle_{\mathrm{med}}}{Q^2}
ight)$$

$$\begin{split} \underbrace{\left(\frac{1}{Q^2} P_{g \to c \bar{c}}\right)^{\text{tot}} &\equiv \left(\frac{1}{Q^2} P_{g \to c \bar{c}}\right)^{\text{vac}} + \left(\frac{1}{Q^2} P_{g \to c \bar{c}}\right)^{\text{med}} \\ &= 2 \,\mathfrak{Re} \, \frac{1}{4 \, E_g^2} \int_{t_{\text{init}}}^{t_{\infty}} dt \int_{t}^{t_{\infty}} d\bar{t} \exp\left[i \frac{m_c^2}{2E_g z(1-z)}(t-\bar{t}) - \epsilon |t| - \epsilon |\bar{t}|\right] \int d\mathbf{r}_{\text{out}} \\ &\times \exp\left[-\frac{1}{2} \int_{\bar{t}}^{\infty} d\xi \, n(\xi) \, \sigma_3(\mathbf{r}_{\text{out}}, z)\right] \exp\left[-i \, \mathbf{\kappa} \cdot \mathbf{r}_{\text{out}}\right] \\ &\times \left[\left(m_c^2 + \frac{\partial}{\partial \mathbf{r}_{\text{in}}} \cdot \frac{\partial}{\partial \mathbf{r}_{\text{out}}}\right) \frac{z^2 + (1-z)^2}{z(1-z)} + 2m_c^2\right] \,\mathcal{K}\left[\mathbf{r}_{\text{in}} = 0, t; \mathbf{r}_{\text{out}}, \bar{t}\right] \,. \end{split}$$

0000000000000

$$\sigma_3(\mathbf{r},z) \equiv -rac{1}{2N_c}\sigma(\mathbf{r}) + rac{N_c}{2}\sigma(z\mathbf{r}) + rac{N_c}{2}\sigma((1-z)\mathbf{r})\,.$$

* ABIMSSW, **JHEP 01 (2023) 080** ** L. Apolinario et al, 1407.0599, F. Dominguez et al., 1907.03653, Isaksen et al., 2107.02542, 2206.02811 M. Sievert et al, 1903.06170, S. Caron-Huot&Gale, 1006.2379

g-> c-cbar: N=1 opacity:

Here, uniform QGP brick of length L and density n_0 .

$$\left(\frac{1}{Q^2}P_{g\to c\bar{c}}\right)_{N=1}^{\mathrm{med}} = \frac{1}{2}n_0 L \int \frac{d\mathbf{q}}{(2\pi)^2} \underbrace{|a_3(\mathbf{q},z)|^2}_{\sigma_{\mathrm{elastic}}(\mathbf{q},z)} \underbrace{\left(1 - \frac{1}{L/\tau_F}\sin\left[L/\tau_F\right]\right)}_{\text{formation time}} \left(\frac{\mathrm{BROAD} + \mathrm{RAD}}{\mathrm{BROAD} + \mathrm{RAD}}\right)$$

➤ characteristic formation time dependence, medium modification negligible for $\tau_F > L$, interpolation btw. coherent and incoherent limits.

$$\boxed{\frac{1}{\tau_F} = \frac{m_c^2 + (\kappa + \mathbf{q})^2}{2E_g \, z(1 - z)} = \frac{Q_1^2}{2E_g}}$$

 $\triangleright q \rightarrow c \, \overline{c}$ that would occur in vacuum, undergo momentum broadening

$$\mathbf{BROAD} = \left(\frac{1}{Q^2} P_{g \to c\bar{c}}\right)_{\kappa \to \kappa + \mathbf{q}}^{\mathrm{vac}} - \left(\frac{1}{Q^2} P_{g \to c\bar{c}}\right)^{\mathrm{vac}}$$

> In addition, we find stimulated medium-induced $g \rightarrow c \bar{c}$ radiation "RAD" We confirm this also in independent calculation in which "vacuum splitting is switched off".

Medium-modified $g \rightarrow c \bar{c}$ splitting: numerical results

Integrated luminosity requirements

To measure medium-enhanced c-cbar, one needs boosted gluons (i.e. jets) and identified charm

HL-LHC luminosity

- The two-body decay of D⁰ can be reconstructed, but $BR(D^0 o K^- \pi^+) \sim 4\%$
- The more abundant semi-leptonic decays of open charm remains to be explored.

Heavy QQbar pairs in jets

- > 1980's: pQCD calculations of number of QQbar in jets as a function of jet energy E
 - MLLA calculation of number of gluons with off-shellness Q²
 - Convoluted with g-> QQbar splitting function

A.H. Mueller and P. Nason, Heavy particle content in QCD jets, Phys. Lett. B 157 (1985) 226.

- Motivation at the time
 - Test running of strong coupling
 - Determine heavy quark mass

Our work

Calculate medium-modification on top of this pQCD baseline

PHYSICAL REVIEW LETTERS 132, 212301 (2024)

- Three independent model implementations:
 - Reweighting vacuum with P^{med}
 - Parton shower with BDMPS splittings
 JetMed supplemented by g-> c cbar

- Observability of enhanced cc-bar radiation.
- Control over confounding factors
 - Jet-pT is medium modified
 - Medium modifies also g-> gg

Can we measure directly τ_f -dependence of jet quenching?

To measure the formation time

$$au_{f} = rac{E_{
m gluon}}{Q^{2}}\,, \qquad Q^{2} = rac{m_{c}^{2}+k_{c}^{2}}{z\,(1-z)}\,.$$

we need to determine E_g, z and k_c

Strategy:

- reconstruct kinematic by tracing c and cbar to common vertex.
- \succ compare kinematic τ_f -distribution in medium and vacuum.

Critical issues:

- \blacktriangleright High fidelity reconstruction of $g \rightarrow c \, \overline{c}$ from hadronic final state.
- \succ Access to τ_f -range commensurate with in-medium path length.
- Size of medium-modification should vary significantly within reconstructable τ_f range.

Nothing is easy ... Phythia MC truth vs C/A reclustering

> This is parton level only.

Relatively soft g-> ccbar splittings are reclustered with other jet fragments in high energy jets.

Improve on low fidelity with jet substructure techniques ...

Grooming away softer emissions

Leads to notable improvements (parton level only).

<u>SoftDrop + (modified) FlavorCone</u>

Reconstruction at hadron level.

threshold is particularly challenging.

Accessible range of formation time scans the in-medium L

Sharp Q-cut does not spoil fidelity of reconstruction MC truth.

<u>A measurable characterists of τ_f -dependent jet quenching</u>

This is the ratio of normalized τ_f -distributions constructed in medium and in vacuum and plotted as a function of τ_f .

<u>A measurable characterists of τ_f -dependent jet quenching</u>

In presence of parton energy loss*, signal persists.

• For model details, see Jasmine Brewer's talk in parallel 29 on Wednesday, 11:10

Conclusions

▶ In theory, $g \rightarrow c \bar{c}$ shows characteristic tell-tale signs of radiative parton energy loss in a clean and qualitatively novel way

- 1. Enhanced ccbar-radiation
- 2. Momentum broadening
- 3. Formation time dependence

In experiment, we expect that

- **1. testing enhanced ccbar-radiation** is accessible in a traditional counting experiment.
- **2. direct access to formation time dependence** of quenching requires modern jet substructure techniques but is feasible.

HL-LHC capabilities (luminosity & detector upgrades) are needed to exploit these physics opportunities.

M. Attems, J. Brewer, G.M. Innocenti, A. Mazeliauskas, S. Park, W. v.d.Schee, G. Soyez, U.A. Wiedemann

Estimating the effects of energy loss on energy correlators

(g)

Jasmine Brewer (Oxford)

 $heta_c$ -

16