Hadronization and Energy Loss of Beauty Quark from Flavor-identified B-Hadrons RAA in pp, pPb, and PbPb Collisions with CMS Hard Probes 2024

Tzu-An Sheng for the CMS Collaboration Sep. 24 2024

B mesons probes the properties of QGP

- Mass dependence of parton energy loss
 - Dead-cone effect: less radiative energy loss for heavier quarks
 - See <u>Lida Kalipoliti's talk (Sep 25, 9:40)</u> for the dead-cone effect in CMS b-jet
- Beauty diffusion coefficient
 - Brownian motion of b quark in the medium
- CMS has the unique advantage to measure exclusive B meson decays in AA systems

Coalescence and strangeness enhancement with B mesons

- Hadronization: in addition to fragmentation, b quarks also recombine with nearby constituent quarks into hadrons
- Enhanced $\mathrm{B}^0_{\mathrm{s}}$ R_{AA} compared to B^+ expected at low p_{T}

PLB 829 (2022) 137062

B_s^0/B^+ event selection

$$\begin{split} \mathsf{B}^+ &\to \mathsf{J}/\!\psi \mathsf{K}^+ \to \mu^- \mu^+ \mathsf{K}^+ \\ \mathsf{B}^0_{\mathrm{s}} &\to \mathsf{J}/\!\psi \phi(1020) \to \mu^- \mu^+ \mathsf{K}^+ \mathsf{K}^- \end{split}$$

- Long-lived B mesons \rightarrow large decay length significance
- Angle between B flight direction and PV-SV displacement
- $\begin{array}{ll} \mathsf{k} & \cos\theta = \hat{r}_{\mathsf{B},\,\mathsf{flight}} \cdot \hat{p}_{\mathsf{T},\,\mathsf{RECO}} \\ & \mathsf{Expect}\; \hat{r}_{\mathsf{B},\,\mathsf{flight}} \parallel \hat{p}_{\mathsf{T},\,\mathsf{RECO}} \end{array}$
- + χ^2 Probability of the decay vertex
- $\cdot \, p_{\scriptscriptstyle T}$ of the daughter tracks
- Track DCA (in z and x-y direction)

B⁰_s/B⁺ Yield extraction

- B⁺ (semi-)peaking background:
 - Error function: Partially reconstructed B decay (e.g. $B^0 \rightarrow J/\psi(K^* \rightarrow K^+\pi^-)$
 - Double bifurcated Gaussian: misidentified π in ${
 m B}^+
 ightarrow {
 m J}/\psi \pi^+$

Cross sections in pp collisions

- Larger cross section at lower p_{T} , consistent with FONLL calculation
- \cdot Kinematic constraints to go down to lower $p_{ extsf{T}}$
- · Dominant systematics from difference between MC and Data

$B^+ R_{AA}$ compared with theory

- DREENA-A, CUJET3.0: (perturbative QCD) collisional and radiative energy loss
- TAMU: (transport model) collisional energy loss
- AdS/CFT HH: thermal fluctuations in the energy loss; diffusion coefficient dependence on quark momentum
- Provides constraining power on the mechanism of beauty quark energy loss and hadronization

- $p_{\rm T} < 15$ GeV:
 - TAMU: includes recombination
 - CUJET3.0: doesn't include recombination
- Roughly compatible with all 3 theory predictions within uncertainty

B mesons R_{AA} compared to B_c^+

• Indication of mass ordering: $R_{AA} (B_c^+) > R_{AA} (B_s^0) > R_{AA} (B^+)$

B mesons R_{AA} compared to light flavors

- R_{AA} converge at high p_{T}
- Splitting between B and D⁰ at low p_{T} : mass hierarchy

Bridging the gap: B⁺ production in the pPb system

B⁺ yield extraction in pPb

$B^+ d\sigma/dp_T$ in pPb agrees with FONLL

- Much smaller uncertainties than FONLL
- FONLL uncertainties: renormalization and factorization scales, b mass, parton distribution functions

$R_{HL}(B^+)$ in pPb

 $R_{\rm HL} = \frac{\langle N_{\rm coll} \rangle|_{\rm low}}{\langle N_{\rm coll} \rangle|_{\rm high}} \frac{({\rm d}\sigma/{\rm d}p_{\rm T})|_{\rm high}}{({\rm d}\sigma/{\rm d}p_{\rm T})|_{\rm low}}$

Summary

- Measured B meson cross section down to 5 GeV and R_{AA} down to 7 GeV
- Improved precision of the B^+ and B^0_s meson R_{AA}
- $\cdot\,$ (B⁺) Able to distinguish different models based on the new accuracy
- + A trend of ${
 m B}^0_{
 m s}$ $R_{
 m AA}$ larger than ${
 m B}^+$ $R_{
 m AA}$
- + B meson $R_{\rm AA}$ larger than D⁰ and light flavor at $p_{\rm T} < 10~{
 m GeV}$
- + First B^+ measurement in pPb as a function of $N_{\rm ch}$

MIT HIG group's work is supported by US DOE-NP

Backup

Muon acceptance

CMS Simulation Preliminary 6 Gen p_T [GeV] 9.0 0 (Reco+ID)/Generated 0.5 0.4 0.3 **PbPb** 0.2 Hybrid-soft ID acceptance 0.1 J/ψ trigger acceptance 0.5 1.5 2 2.5 Gen |ŋ|

· Acceptance: material, magnetic field

CMS-PAS-MUO-21-001

	$p_{\rm T}$ (GeV/c)									$p_{\rm T}$ (GeV/c)			
Source	5–7	7 - 10	10 - 15	15 - 20	20-30	30-50	50-60	20-50		7 - 10	10 - 15	15 - 20	20-50
Hadron tracking efficiency	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4		4.8	4.8	4.8	4.8
Track selection	1.8	0.31	0.43	0.37	0.27	0.052	1.6	0.24		0.65	0.2	2.7	0.78
Data-MC discrepancy	4.7	7.2	7.2	0.98	0.87	0.92	0.83	0.84		3.7	1.9	1.7	1.5
$p_{\rm T}$ shape	0.02	0.0054	0.013	0.0095	0.0047	0.0032	0.018	0.0031		0.045	0.015	0.0037	0.0024
PDF variation	2.1	1.4	3.2	1.1	0.69	1.8	2.4	0.57		3.6	2	2.9	3.2
Muon efficiency	0.47	0.45	0.37	0.36	0.43	0.64	0.64	0.47		0.46	0.38	0.35	0.45
Bkg contamination of efficiency	1.5	2.8	0.84	0.41	0.46	0.18	1.1	0.41		1.1	2.3	0.28	0.38
Sum	6.2	8.3	8.3	2.9	2.7	3.2	4.1	2.7		7.2	6	6.5	6
Luminosity \mathcal{L}	1.9								1.9				
Branching fractions	2.9								7.5				
Sum (global systematics)	3.5							7.7					

• Tracking efficiency: 2.4% per track

• Dominant systematics from inaccurate description of MC (especially DLS)

$$\left\langle \frac{1}{\alpha(p_{\mathrm{T}}, y) \times \varepsilon(p_{\mathrm{T}}, y)} \right\rangle = \frac{\sum_{i,j}^{N_i, N_j} \frac{1}{\alpha(p_{\mathrm{T}}, y)\varepsilon_{i,j}(p_{\mathrm{T}}, y)} n_{i,j}(p_{\mathrm{T}}, y)}{\sum_{i,j}^{N_i, N_j} n_{i,j}(p_{\mathrm{T}}, y)},$$

- \cdot Independent of the p_{T} distribution from MC
- \cdot Account for the correlation between p_{T} and y
- Regularize the distribution by taking the inverse of the total efficiency

Multiplicity dependence in PbPb yield

PLB 829 (2022) 137062

Cut optimization

- Maximize the discriminating power by training a machine learning algorithm in the multi-dimensional parameter space.
- Boosted Decision Tree (BDT):
 - Select on each variable sequentially in a tree structure
 - Train many weak classifiers with subsets of randomly selected samples, emphasizing the misclassified events

B_s^0/B^+ production yield calculation

$$\frac{\mathrm{d}\sigma_{\mathsf{pp}}}{\mathrm{d}p_{\mathsf{T}}} = \frac{1}{2} \frac{N_{\mathrm{obs}}(p_{\mathsf{T}})}{\mathscr{B} \mathscr{L}} \frac{1}{\Delta p_{\mathsf{T}}} \left\langle \frac{1}{\alpha(p_{\mathsf{T}}, y) \epsilon(p_{\mathsf{T}}, y)} \right\rangle,$$

- Acceptance and efficiency corrected using a fine (p_T, y) 2D map
- \cdot Muon efficiency corrected by data/MC scale factors using J/ ψ

