Measurement of collective flow of D⁰ in heavy ion collisions at CMS ## Nihar Ranjan Saha **Indian Institute of Technology, Madras** (On behalf of CMS Collaboration) September 22-27, 2024 ## Heavy flavor and QGP #### **Production:** - ➤ Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c). - Production rates can be calculated by pQCD - \rightarrow Higher penetrating power: $m_Q >> T_c$, Λ_{QCD} Heavy (u, d, s) (c, b, t) ## Heavy flavor and QGP Heavy #### Production: - Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c). - Production rates can be calculated by pQCD - Higher penetrating power: m_Q >>T_c, Λ_{QCD} #### Energy loss mechanism: - Radiative: Loss energy by via inelastic $Q \rightarrow Qg$ process. Significant at higher energy. - ➤ Collisional: Transfer energy via elastic $Qq \rightarrow Qq$ process. Significant at lower energy. Light ## Heavy flavor and QGP #### Production: - Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c). - Production rates can be calculated by pQCD - Higher penetrating power: m_Q >>T_c, Λ_{QCD} #### Energy loss mechanism: - Radiative: Loss energy by via inelastic $Q \rightarrow Qg$ process. Significant at higher energy. - ightharpoonup Collisional: Transfer energy via elastic $Qq \rightarrow Qq$ process. Significant at lower energy. #### Azimuthal anisotropy (collective flow): - Initial state geometry and fluctuation. - Path dependent parton energy loss. #### Prompt D⁰ - ~40% of all prompt charm hadrons are D⁰ meson. - Best avenue for charm quark properties. #### Prompt D⁰ - ~40% of all prompt charm hadrons are D⁰ meson. - Best avenue for charm quark properties. #### ❖ Non-Prompt D⁰ - → ~60% of all b hadrons decay to D⁰ mesons. - Great possibilities for b quark studies. ## Signal extraction of D^0 #### Reconstruction - ➤ Used PbPb data at $\sqrt{S_{NN}}$ = 5.02 TeV. - ightharpoonup Inclusive D⁰ reconstruction D⁰ \rightarrow K⁻ π ⁺ - No hadron identification. - All opposite charge track pairs combinations. - Boosted Decision Tree (BDT) for background suppression. ## Signal extraction of D^0 #### Reconstruction - ➤ Used PbPb data at $\sqrt{S_{NN}}$ = 5.02 TeV. - ightharpoonup Inclusive D⁰ reconstruction D⁰ \rightarrow K⁻ π ⁺ - No hadron identification. - All opposite charge track pairs combinations. - Boosted Decision Tree (BDT) for background suppression. ## Inclusive D⁰ yield - ➤ Signal mass → Double gaussian - ➤ Swap component → Gaussian - $ightharpoonup K^+K^- \& \pi^+\pi^- \to Crystal ball functions$ - ➤ Combinatorial → Polynomial 3rd order ## Anisotropy of D⁰ ## **Anisotropy coefficient**, v_n $$v_n = <2cos\ n(\phi-\psi_n)>$$ $\phi \rightarrow D^0$ azimuthal angle $\psi_n \to \text{Symmetry plane}$ $v_2 \rightarrow \text{Elliptic flow} \rightarrow \text{Initial state geometry}$ $v_3 \rightarrow$ Triangular flow \rightarrow Initial state fluctuation #### We can probe: - Collectivity - > Diffusion - Hadronization - Path dependent parton energy loss ## **Prompt fraction estimation** **DCA** (distance of closest approach) ## **Prompt fraction estimation** DCA (distance of closest approach) PLB 850 (2024)138389 ## Analysis method: Scalar product **Q-vector:** $$\vec{Q}_m = \left(\sum_{i=1}^{M} w_i \cos(m\phi_i) - \left\langle \sum_{i=1}^{M} w_i \cos(m\phi_i) \right\rangle, \sum_{i=1}^{M} w_i \sin(m\phi_i) - \left\langle \sum_{i=1}^{M} w_i \sin(m\phi_i) \right\rangle \right)$$ **Large** η gap $|\Delta \eta| > 3.0$ applied to remove non-flow effects. ## Results: Prompt $\mathbf{D}^0 \mathbf{v}_n$ - Strong p_T and centrality dependence for v_2 - Positive v_2 at higher p_T indicates path dependent energy loss of charm quarks. - Significant nonzero v_3 up to ~10 GeV, indicates initial state fluctuation. ## Results: Model comparison - Comparison with charge hadrons shows mass hierarchy. - Qualitative agreement with model predictions. ## Results: Non-prompt $D^0 v_n$ First measurement of $b \rightarrow D^0$ anisotropy in PbPb collisions PLB 850 (2024)138389 - Mass ordering of flow magnitudes. - Weak p_T and centrality dependence for v_2 . - Indication of non-zero v, #### **Results: Model comparison** High p_T CUJET3 CPC 43 4 (2019) 044101 LBT PRC 94 (2016) 014909 Low p_T PHSD: PRC 92 (2015) 014910 TAMU PLB 735 (2014) 445 LGR EPJ C 80 7 (2020) 671 PLB 850 (2024)138389 - Qualitatively good agreement between theory and data. - \diamond Different models describe data for different p_T ranges. #### Measurement of prompt D⁰ - We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges. - \triangleright Strong p_T and centrality dependence are observed for v_2 . - Non-zero v_3 is also observed, indicates initial state fluctuation. - Qualitative agreement with theoretical models. #### Measurement of prompt D⁰ - We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges. - \triangleright Strong p_T and centrality dependence are observed for v_2 . - Non-zero v_3 is also observed, indicates initial state fluctuation. - Qualitative agreement with theoretical models. #### Measurement of Non-prompt D⁰ - We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges. - ightharpoonup Weak p_T and centrality dependence are observed for v_2 . - \rightarrow Indication of non-zero v_3 - Qualitative agreement with theoretical models. # Thank you! ## **Backup** #### Simultaneous fit #### Theoretical models **CUJET 3.0**: A pQCD-based jet energy loss model with a color-magnetic monopole medium for heavy quarks in QGP. **PHSD**: An off-shell transport model with dynamical quarks and gluons for non-equilibrium heavy quark dynamics in QGP. **TAMU**: A non-perturbative T-matrix model describing heavy quark diffusion via strong interactions in QGP. **LBT**: A pQCD-based Boltzmann transport model simulating heavy quark scattering in QGP. **LGR**: Langevin framework for heavy quark dynamics with strong coupling in a gluon-rich QGP. **SUBATECH**: Hydro-kinetic or Langevin model focusing on drag and diffusion of heavy quarks in QGP. ## CMS v_n comparison v_2 of Charged hadron > Charm hadron > Beauty hadron