Measurement of collective flow of D⁰ in heavy ion collisions at CMS

Nihar Ranjan Saha

Indian Institute of Technology, Madras

(On behalf of CMS Collaboration)

September 22-27, 2024

Heavy flavor and QGP

Production:

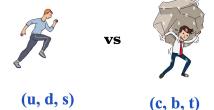
- ➤ Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c).
- Production rates can be calculated by pQCD
- \rightarrow Higher penetrating power: $m_Q >> T_c$, Λ_{QCD}

Heavy

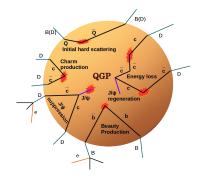
(u, d, s)

(c, b, t)

Heavy flavor and QGP


Heavy

Production:


- Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c).
- Production rates can be calculated by pQCD
- Higher penetrating power: m_Q >>T_c, Λ_{QCD}

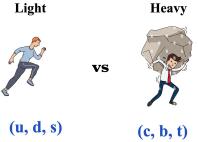
Energy loss mechanism:

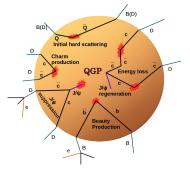
- Radiative: Loss energy by via inelastic $Q \rightarrow Qg$ process. Significant at higher energy.
- ➤ Collisional: Transfer energy via elastic $Qq \rightarrow Qq$ process. Significant at lower energy.

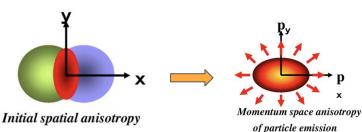
Light

Heavy flavor and QGP

Production:


- Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c).
- Production rates can be calculated by pQCD
- Higher penetrating power: m_Q >>T_c, Λ_{QCD}


Energy loss mechanism:

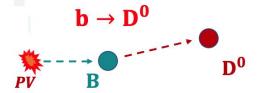

- Radiative: Loss energy by via inelastic $Q \rightarrow Qg$ process. Significant at higher energy.
- ightharpoonup Collisional: Transfer energy via elastic $Qq \rightarrow Qq$ process. Significant at lower energy.

Azimuthal anisotropy (collective flow):

- Initial state geometry and fluctuation.
- Path dependent parton energy loss.

Prompt D⁰

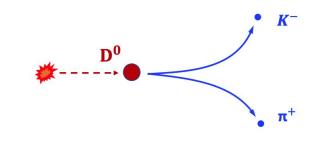
- ~40% of all prompt charm hadrons are D⁰ meson.
- Best avenue for charm quark properties.


Prompt D⁰

- ~40% of all prompt charm hadrons are D⁰ meson.
- Best avenue for charm quark properties.

❖ Non-Prompt D⁰

- → ~60% of all b hadrons decay to D⁰ mesons.
- Great possibilities for b quark studies.

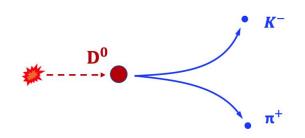


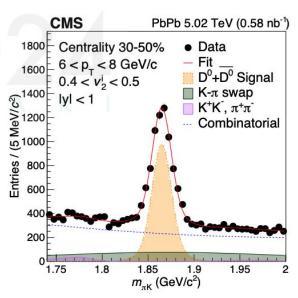
Signal extraction of D^0

Reconstruction

- ➤ Used PbPb data at $\sqrt{S_{NN}}$ = 5.02 TeV.
- ightharpoonup Inclusive D⁰ reconstruction D⁰ \rightarrow K⁻ π ⁺
- No hadron identification.
- All opposite charge track pairs combinations.
- Boosted Decision Tree (BDT) for background suppression.

Signal extraction of D^0




Reconstruction

- ➤ Used PbPb data at $\sqrt{S_{NN}}$ = 5.02 TeV.
- ightharpoonup Inclusive D⁰ reconstruction D⁰ \rightarrow K⁻ π ⁺
- No hadron identification.
- All opposite charge track pairs combinations.
- Boosted Decision Tree (BDT) for background suppression.

Inclusive D⁰ yield

- ➤ Signal mass → Double gaussian
- ➤ Swap component → Gaussian
- $ightharpoonup K^+K^- \& \pi^+\pi^- \to Crystal ball functions$
- ➤ Combinatorial → Polynomial 3rd order

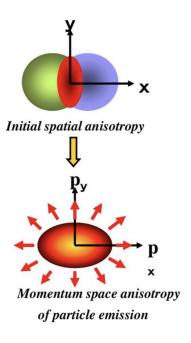


Anisotropy of D⁰

Anisotropy coefficient, v_n

$$v_n = <2cos\ n(\phi-\psi_n)>$$

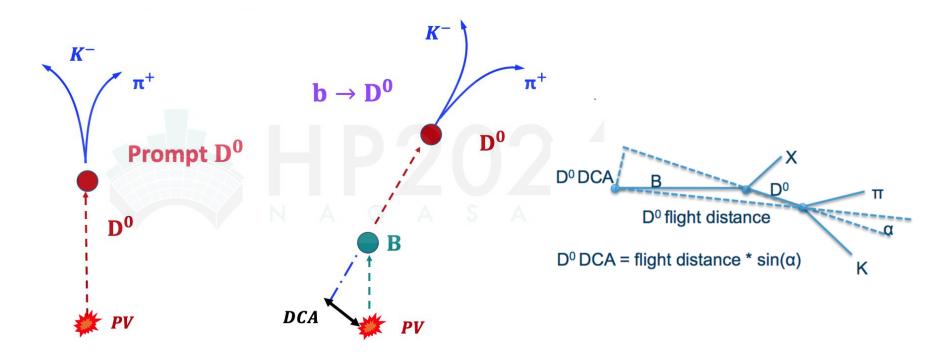
 $\phi \rightarrow D^0$ azimuthal angle


 $\psi_n \to \text{Symmetry plane}$

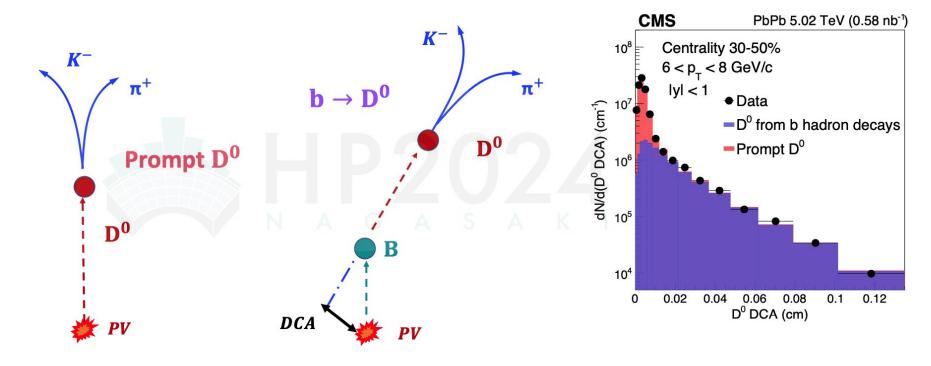
 $v_2 \rightarrow \text{Elliptic flow} \rightarrow \text{Initial state geometry}$

 $v_3 \rightarrow$ Triangular flow \rightarrow Initial state fluctuation

We can probe:


- Collectivity
- > Diffusion
- Hadronization
- Path dependent parton energy loss

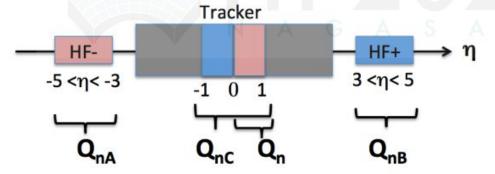
Prompt fraction estimation



DCA (distance of closest approach)

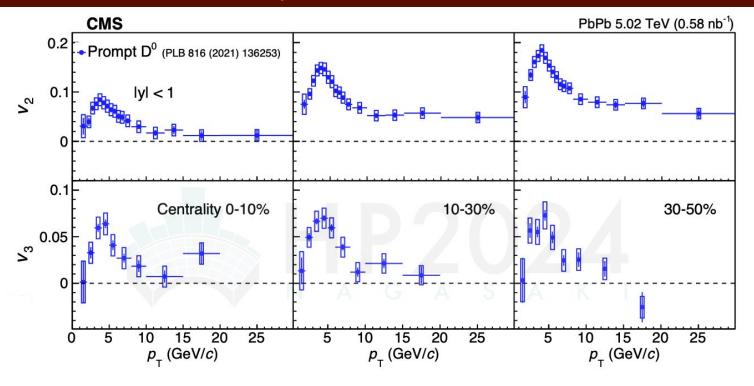
Prompt fraction estimation

DCA (distance of closest approach)


PLB 850 (2024)138389

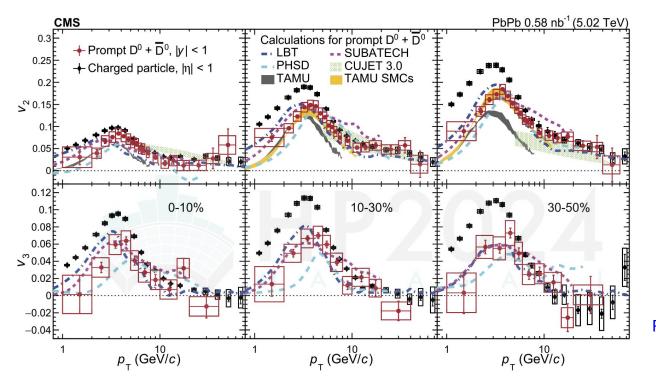
Analysis method: Scalar product

Q-vector:
$$\vec{Q}_m = \left(\sum_{i=1}^{M} w_i \cos(m\phi_i) - \left\langle \sum_{i=1}^{M} w_i \cos(m\phi_i) \right\rangle, \sum_{i=1}^{M} w_i \sin(m\phi_i) - \left\langle \sum_{i=1}^{M} w_i \sin(m\phi_i) \right\rangle \right)$$



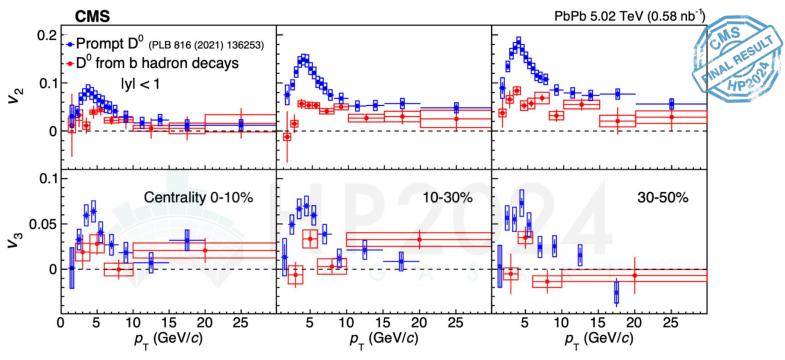
Large η gap $|\Delta \eta| > 3.0$ applied to remove non-flow effects.

Results: Prompt $\mathbf{D}^0 \mathbf{v}_n$



- Strong p_T and centrality dependence for v_2
- Positive v_2 at higher p_T indicates path dependent energy loss of charm quarks.
- Significant nonzero v_3 up to ~10 GeV, indicates initial state fluctuation.

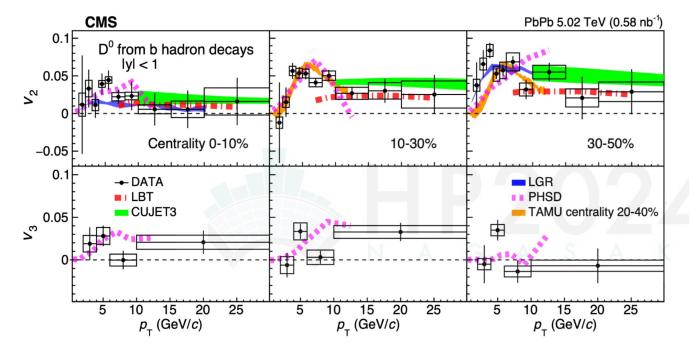
Results: Model comparison



- Comparison with charge hadrons shows mass hierarchy.
- Qualitative agreement with model predictions.

Results: Non-prompt $D^0 v_n$

First measurement of $b \rightarrow D^0$ anisotropy in PbPb collisions


PLB 850 (2024)138389

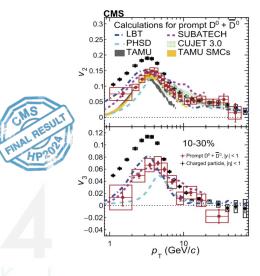
- Mass ordering of flow magnitudes.
- Weak p_T and centrality dependence for v_2 .
- Indication of non-zero v,

Results: Model comparison

High p_T CUJET3 CPC 43 4 (2019) 044101 LBT PRC 94 (2016) 014909

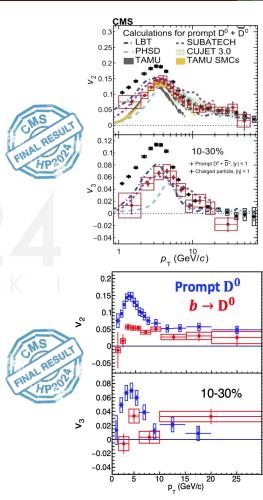
Low p_T
PHSD: PRC 92 (2015) 014910
TAMU PLB 735 (2014) 445
LGR EPJ C 80 7 (2020) 671

PLB 850 (2024)138389


- Qualitatively good agreement between theory and data.
- \diamond Different models describe data for different p_T ranges.

Measurement of prompt D⁰

- We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges.
- \triangleright Strong p_T and centrality dependence are observed for v_2 .
- Non-zero v_3 is also observed, indicates initial state fluctuation.
- Qualitative agreement with theoretical models.

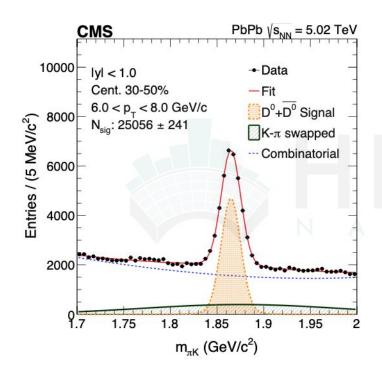


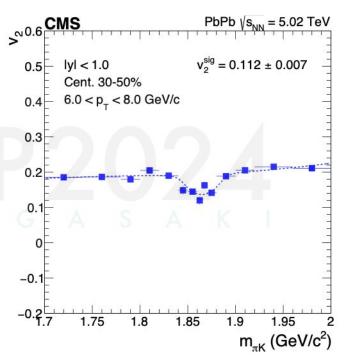
Measurement of prompt D⁰

- We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges.
- \triangleright Strong p_T and centrality dependence are observed for v_2 .
- Non-zero v_3 is also observed, indicates initial state fluctuation.
- Qualitative agreement with theoretical models.

Measurement of Non-prompt D⁰

- We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges.
- ightharpoonup Weak p_T and centrality dependence are observed for v_2 .
- \rightarrow Indication of non-zero v_3
- Qualitative agreement with theoretical models.


Thank you!


Backup

Simultaneous fit

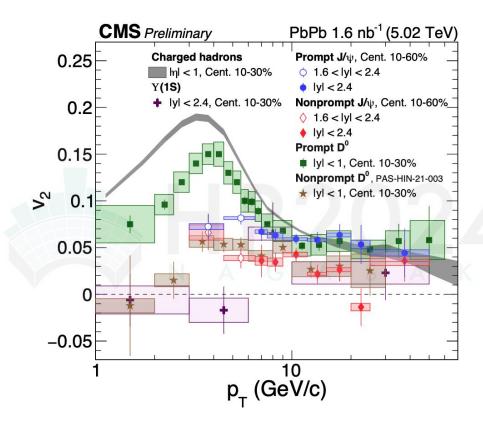
Theoretical models

CUJET 3.0: A pQCD-based jet energy loss model with a color-magnetic monopole medium for heavy quarks in QGP.

PHSD: An off-shell transport model with dynamical quarks and gluons for non-equilibrium heavy quark dynamics in QGP.

TAMU: A non-perturbative T-matrix model describing heavy quark diffusion via strong interactions in QGP.

LBT: A pQCD-based Boltzmann transport model simulating heavy quark scattering in QGP.


LGR: Langevin framework for heavy quark dynamics with strong coupling in a gluon-rich QGP.

SUBATECH: Hydro-kinetic or Langevin model focusing on drag and diffusion of heavy quarks in QGP.

CMS v_n comparison

 v_2 of Charged hadron > Charm hadron > Beauty hadron