Studies of quarkonia in excited states with CMS

Jeongho Kim

on behalf of the CMS Collaboration

Outline

- Quarkonium Production in heavy ion collisions
- Y meson suppression in pPb and PbPb
- Motivation for measurement of quarkonia in excited states
- Existing results for excited charmonium at LHC
- Performance of χ_c measurement with CMS
- Summary

Quarkonium production in heavy ion collisions

Quarkonia production process: Mostly initiated by gluon fusion

Sensitive to the parton distribution functions (PDF)

The Yields of quarkonium states

• Proposed to be suppressed due to interactions in the QGP

The amount of suppression

• Expected to be related to binding energies

Quarkonium production in heavy ion collisions

Heavy quarks experience energy loss while traveling through the nucleus

• This leads to the suppression of bound states

Heavy quark pairs interact with comoving hadrons in the late stage

• This disrupts fully formed quarkonium states.

To fully understand quarkonium production, we must distinguish the QGP effect from other effects like CNM

Y meson and suppression in pPb and PbPb

CMS reported Y states in both pPb and PbPb

Relative suppression was also observed in pPb collisions.

Channel

• Detect bottomonium via dimuon decay channel

pPp: <u>PLB 835(2022)</u>, <u>137397</u>

Y meson suppression in pPb

• Comparison of pp and pPb collisions ($\sqrt{S_{NN}} = 5.02 \text{ TeV}$)

- PLB 835(2022), 137397
- Suppression observed in pPb collisions compared to pp results

Y meson suppression in pPb

- The suppression is not much dependent on both $p_{\rm T}$ and rapidity
- $R_{pPb}(1S) > R_{pPb}(2S) > R_{pPb}(3S)$ ->Related to the binding energy

Y meson suppression in PbPb

- The suppression is not much dependent on $\ensuremath{p_T}$
- Strong dependence on centrality of collision
- $R_{PbPb}(1S) > R_{PbPb}(2S) > R_{PbPb}(3S)$
- ->Related to the binding energy

PRL 133, 022302

J/ψ and $\psi(2S)$ results in pPb

 The ψ(2S) study have shown that excited state exhibit different suppression

 A trend of increasing relative suppression is observed as multiplicity (or related variables) increases

• CMS will present the multiplicity dependence of $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in pPb collisions this afternoon

Motivation for measurement of quarkonia in excited states

Different suppression of excited quarkonium can not be explained solely by Initial state effects

• Both charmonium and bottomonium analyses demonstrate the relative suppression of excited states.

Preceding studies on nuclear modification factors for charmonium, J/ψ and ψ

- Feed-down from the P-wave was not excluded
- Feed-down from χc is crucial to isolate the nuclear modification factor of prompt J/ ψ results.

Motivation for measurement of quarkonia in excited states

To fully understand the quarkonia modification in hot or cold medium.

• Exclusive measurement of the R_{AA} for each state is crucial

Main goal

- Study of relative modification of χ_c to J/ ψ in pPb
- Study of relative yields in of χ_{c1} and χ_{c2}

We aim to meausure χ_{c1} and χ_{c2} in pPb collision, $2.8^{\lfloor -L \rfloor}$ as the step toward for the measurement in PbPb collision

pp

ATLAS

- The cross-sections for prompt and non-prompt χ_{c1} and χ_{c2} production have been measured at 7 TeV
- Reported χ_c to J/ ψ and χ_{c2} to χ_{c1} ratio.
- The measurements of prompt χ_c are combined with existing prompt J/ ψ production to derive the fraction of prompt J/ ψ produced in feed-down from χ_c decays.

рр

CMS

- Measured a extend range of $J/\psi P_T$
- Studied the effect of χ_c polarization on photon reconstruction efficiency and compared to theoretical prediction.
- CMS observed that both χ_{c1} and χ_{c2} are strongly polarized
- Due to the polarization, χ_c analysis requires significantly different treatments of the acceptance correction compared to J/ ψ .

pPb

LHCb

- First measurement of χ_{c2}/χ_{c1} and $\chi_c / J/\psi$ in pPb with rapidity 1.5 < y* < 4.0 -5.0<y* <-2.5
- Comparison with the ratio measured in pp collision.
- The ratio is consistent with no dissociation of χ_c states, and existing pp measurments.

pPb

LHCb

- First measurement of χ_{c2}/χ_{c1} and $\chi_c/J/\psi$ in pPb with rapidity 1.5 < y* < 4.0 -5.0<y* <-2.5
- Comparison with the ratio measured in pp collision.
- The ratio is consistent with no dissociation of χ_c states, and existing pp measurments.

Reconstruction of χ_c in CMS

 $\chi_c \rightarrow J/\psi + \gamma \rightarrow \mu^+ \mu^- + e^+ e^-$ (conversion)

pPb 8.16 TeV

 $|\eta| < 2.4$

$\chi_c / J/\psi$ and χ_{c2} / χ_{c1}

Performance of χ_c measurement with CMS

- Therefore, this plot represents γ acceptance and γ , χ_c selection efficiency.
- Forward rapidity exhibits higher efficiency than backward
 - -> Due to the target geometry, material budget of the target is much higher than the mid and backward rapidity region.

Performance of χ_c measurement with CMS

χ_c invariant mass plot for pp results and pPb simulation

- CMS observed clear peak of both χ_{c1} and χ_{c2} in pp collisions.
- χ_{c1} and χ_{c2} peak can be clearly distinguishable in the simulation studies in pPb environment.

Midrapidity($|y_{CM}| < 1.0$) (12 < $P_T < 18$ GeV) pPb

17

Performance of χ_c measurement with CMS

χ_c invariant mass plot in pPb simulation

- Midrapidity ($12 < P_T < 18$ GeV) and High multiplicity (P_T integrated) plots.
- The high multiplicity plot exhibits a relatively broader peak compared to the midrapidity plot.
- As demonstrated, the χ_{c1} and χ_{c2} peaks remain clearly distinguishable even in high multiplicity regions.

- CMS has been conducting research on the production for excited quarkonia in pPb or PbPb collisions.
- The study of χ_c is crucial for understanding the feed-down effect of J/ψ
- This analysis will serve as a baseline for nucleus-nucleus collisions.
- MC simulation results demonstrate that both χ_{c1} and χ_{c2} peak are clearly distinguishable.

χ_c Charmonium P-states

P states

- χ_{c0}(1P) m = 3415 MeV
- χ_{c1}(1P) m = 3511 MeV
- $\chi_{c2}(1P) \text{ m} = 3556 \text{ MeV}$

 $\chi_c \to J/\psi + \gamma \to \mu^+ \mu^- + e^+ e^-$ (conversion)

BR $(\chi_c \rightarrow J/\psi + \gamma)$: 1.4%, 34%, 19%

 χ_{c0} too small, χ_{c1} biggest peak, χ_{c2} smaller peak

Y meson suppression in pPb and PbPb

The suppression is smaller in pPb compared to PbPb

Both results shows the binding energy dependence R(1S) > R(2S) > R(3S)

PLB 835(2022), 137397

arXiv 2303.17026

PLB 790(2019), 2070

Fitting function

Double-side crystal ball function for signal.

 $\sigma_{\chi_{c2}}$ is constrained ($\sigma_{\chi_{c2}} = 1.11 \sigma_{\chi_{c1}}$)

$$DCB(m;\mu,\sigma,\alpha_L,n_L,\alpha_H,n_H) = \begin{cases} e^{-0.5t^2} & \text{if } -\alpha_L < t < \alpha_H \\ e^{-0.5\alpha_L^2} \left[\frac{\alpha_L}{n_L} \left(\frac{n_L}{\alpha_L} - \alpha_L - t \right) \right]^{-n_L} & \text{if } t < -\alpha_L \\ e^{-0.5\alpha_H^2} \left[\frac{\alpha_H}{n_H} \left(\frac{n_H}{\alpha_H} - \alpha_H + t \right) \right]^{-n_H} & \text{if } t > \alpha_H \end{cases}$$

pPb 175 nb⁻¹ (8.16 TeV)

 $10.4~\pm1.8$