Measurements of production of charm-hadron pairs in pp collisions with ALICE

Pengzhong Lu (for the ALICE Collaboration)

University of Science and Technology of China (USTC)

Hard probes 2024, Nagasaki, 22–27/09/2024

Motivation

- \odot Heavy quarks (c, b) are primarily produced through hard scattering processes.
- - and Double Parton Scattering (DPS).

- Access the internal dynamics of protons
- Study the transverse-momentum dependent distributions of gluons^{[1] [2]}
- Investigate the puzzle surrounding the quarkonium production mechanism ^[3]

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

The production of c-hadron pairs provides an opportunity to study both Single Parton Scattering (SPS)

- Study the parton transverse profile and correlations ^[4] \bigcirc
- Pocket formula: $\sigma_{\text{eff}} = \frac{1}{1 + \delta_{AB}} \frac{\sigma^A \sigma^B}{\sigma_{DDS}^{AB}}$, $\delta_{AB} = 1$ if A = B else 0 0
 - Improve our understanding of the background ($Z + b\bar{b}$, $oldsymbol{O}$ $W^+ + W^+$ etc.) in searches for new physics

[1] PLB 784 (2018) 217 [3] EPJC 79 (2019) 1006 [2] JHEP 06 (2017) 247 [4] PRD 57 (1998) 503

Effective cross-section summary

- The general purpose of DPS measurements is to measure the $\sigma_{
 m eff}$
- o Aim to validate its universality or probe its dependence on process and energy
 - The production of charm-hadron pairs at ALICE will serve as important input

The ALICE detector (Run 2)

During Run 2, ALICE already conducted measurements of J/ψ pair production at forward rapidity (2.5 < *y* < 4.0)

Inner Tracking System Track reconstruction Vertex reconstruction

> • $J/\psi \rightarrow e^+e^-$ and open heavyflavour states measurements at midrapidity (|y| < 0.9)

• Inclusive J/ $\psi \rightarrow \mu^+ \mu^-$

measurements with di- μ triggered data at forward rapidity (2.5 < y < 4.0)

$J/\psi - J/\psi$ at forward rapidity: analysis strategy

Loop over all combinations of double di- μ pairs in the same event:

- Compute the 2D invariant mass spectrum
- Arbitrary ordering between the double di- μ pairs
- Model the 2D spectrum with J/ ψ shape constrained from the J/ ψ standard alone analysis

 $F(m_1, m_2) = N_{S_1^{J/\psi}, S_2^{J/\psi}} \times S_1^{J/\psi}(m_1) \times S_2^{J/\psi}(m_2) + N_{B_1^{J/\psi}, S_2^{J/\psi}} \times B_1^{J/\psi}(m_1) \times S_2^{J/\psi}(m_2)$ + $N_{S_1^{J/\psi}, B_2^{J/\psi}} \times S_1^{J/\psi}(m_1) \times B_2^{J/\psi}(m_2) + N_{B_1^{J/\psi}, B_2^{J/\psi}} \times B_1^{J/\psi}(m_1) \times B_2^{J/\psi}(m_2)$

Acceptance-times-efficiency correction and lumi. normalisation

EXAMPLE Mixed signals and background

Double backgrounds

----- Di-J/ψ

Estimation of the non-prompt contribution

- Inclusive $\sigma(J/\psi, J/\psi) = 10.3 \pm 2.3$ (stat.) ± 1.3 (syst.) nb ^[6]
- Estimation on the non-prompt contribution
 - For single J/ψ production:

•
$$\sigma_{\text{non-prompt}}(J/\psi) = 2 \times \sigma_{b\overline{b}}^{\text{total}} \times \beta \times B (h_b \to J/\psi + Z)$$

•
$$\sigma_{\text{prompt}}(J/\psi) = \sigma_{\text{inclusive}}(J/\psi) - \sigma_{\text{non-prompt}}(J/\psi)$$

• For the J/ψ pair production:

•
$$\sigma_{\text{non-prompt}}(J/\psi, J/\psi) = \sigma_{bb}^{total} \times \alpha \times B^2 (h_b \to J/\psi +$$

• $\sigma_{\text{prompt}}(J/\psi, J/\psi) = \sigma_{\text{inclusive}}(J/\psi, J/\psi) - \sigma_{\text{non-prompt}}(J/\psi, J/\psi)$

Estimation of the non-prompt contribution

- Inclusive $\sigma(J/\psi, J/\psi) = 10.3 \pm 2.3$ (stat.) ± 1.3 (syst.) nb ^[6]
- Estimation on the non-prompt contribution
 - For single J/ψ production:

•
$$\sigma_{\text{non-prompt}}(J/\psi) = 2 \times \sigma_{b\bar{b}}^{\text{total}} \times \beta \times B (h_b \to J/\psi + Z)$$

•
$$\sigma_{\text{prompt}}(J/\psi) = \sigma_{\text{inclusive}}(J/\psi) - \sigma_{\text{non-prompt}}(J/\psi)$$

• For the J/ψ pair production:

•
$$\sigma_{\text{non-prompt}}(J/\psi, J/\psi) = \sigma_{bb}^{\text{total}} \times \alpha \times B^2 (h_b \to J/\psi +$$

o $\sigma_{\text{prompt}}(J/\psi, J/\psi) = \sigma_{\text{inclusive}}(J/\psi, J/\psi) - \sigma_{\text{non-prompt}}(J/\psi, J/\psi)$

Assuming solely DPS production, one can calculate the $\sigma_{
m eff}$ using the prompt sources

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

It is an approximation, since we should expect the SPS as well

[6] Phys.Rev.C 108 (2023) 045203

Estimation on the eff. σ and Results discussion

 $\frac{1}{2} \frac{\sigma_{\text{prompt}} (J/\psi)^2}{\sigma_{\text{prompt}} (J/\psi, J/\psi)} = 6.7 \pm 1.6 \text{ (stat.)} \pm 2.7 \text{ (syst.) mb}$

- First charmonium pair production measurement in ALICE
- Despite caveats from SPS and DPS contributions, this effective value aligns with quarkonium-pair production measurements

ALICE requires more precise measurements

ALICE detector upgrades for Run 3

Major upgrade of the ALICE detector (2019-2021), and in production since 2022

- Continuous readout: up to 500 kHz in pp and 50 kHz in Pb–Pb $oldsymbol{O}$
 - o Full Online and Offline software upgrade (O²)
- Already now improvement 2–3 times in x-y direction and 5–6 in z direction \bigcirc
- Secondary vertexing at forward rapidity \bigcirc

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

Excellent performance across all upgraded detectors

ALI-PERF-571258

Opportunities on ALICE Run 3

- In Run 3, ALICE has the possibility to conduct many \bigcirc new analyses, such as:
 - Combined analyses of the central barrel μ spectrometer (D⁰(|y| < 0.8)–J/ ψ (2.5 < y < 4.0))
 - Prompt/non-prompt separation for forward rapidity J/ψ reconstruction
- SPS DPS separation sensitive to Δy
- Exploit ALICE's unique capabilities at the LHC to \bigcirc
- extend Δy coverage up to ~ 5

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

[8] Phys. Rev. D 90, 111101

$J/\psi - D^0$ at midrapidity

ALI-PERF-580350

- Account for reflections* from the D^o reconstruction.
- A notable associated signal of $J/\psi D^0$ can be observed.

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

• Begin by examine the associated production of $J/\psi - D^0$ using an unbinned maximum likelihood fit.

 $|\Delta y(J/\psi, D^0)| < 1.7$

*reflection: D⁰($\rightarrow K^{-}\pi^{+}$ and c.c.) built with the wrong mass hypothesis

11

 J/ψ (2.5 < y < 4.0)-D^o

ALI-PERF-580334

- Investigate the associated production of D^o in conjunction with a forward rapidity J/ψ .
- Additionally, consider the presence of the $\psi(2S)$.
- Improved S/B can be achieved in forward rapidity J/ψ reconstruction.

- $1.3 < |\Delta y(J/\psi, D^0)| < 4.8$
- Cover the full Δy range up to ~ 5

D⁰–D⁰ at midrapidity

ALI-PERF-575767

 \bigcirc pairs $(D^0 - \overline{D}^0)$ production.

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

ALI-PERF-576200

Double open charm hadron production is also a crucial supplementary measurement. • Investigate the differences between D⁰ same-sign pairs (D^0-D^0 , $\overline{D}^0-\overline{D}^0$) and opposite-sign

Summary

In ALICE Run 2:

- The first measurement of double J/ψ production was conducted using pp data.
- The $\sigma_{\rm eff}$ is consistent with measurements of open and hidden charm pair production.

In ALICE Run 3:

- Thanks to the detector upgrades and the large data samples,
 - The J/ ψ –D⁰ measurements are now feasible in pp and promising in Pb–Pb collisions
 - Extend the Δy coverage up to ~ 5

Additional slides

Double charm production in p-Pb collisions

- The double c-hadron are correlated in SPS, uncorrelated in DPS
- Our correlations can be modified relative to pp due to the nuclear effects:
 - o Modifications of the nuclear PDF?
 - o Cronin effect, energy loss crossing nucleus, hydrodynamic effects?

Pengzhong Lu - HP2024 Nagasaki - 23/09/2024

ncorrelated in DPS

[9] PHYS. REV. LETT. 125 (2020) 212001

