

First $D^0 + \overline{D}^0$ measurement in nucleus-nucleus collisions at SPS energies with NA61/SHINE

Anastasia Merzlaya (UiO) (for the NA61/SHINE Collaboration)

Hard Probes 2024 23.09.2023

Motivation of open charm measurements

- Heavy quarks are produced in the hard scattering processes that occur in the early stage of the collision between partons of the incoming nuclei;
- By studying charm hadrons one can get insight into properties of the medium created in the collision;
- Such measurements can be in a big interest at the SPS energies, close to the threshold of QGP creation.
- There are no measurements of open charm in A+A collisions at SPS.

Models of charm production

Predictions of charm yield differ by up to two orders of magnitude for central heavy-ion collisions at the top SPS energy (beam momentum 150A GeV/c, $\sqrt{s_{NN}} = 16.8$ GeV);

- Obtaining precise data on $D^0 + \overline{D}^0$ is expected to narrow the spectrum of viable theoretical models and thus learn about the charm quark and hadron production mechanisms.
- **HSD:** Hadron-String Dynamics O. *Linnyk et al. Int. J. Mod. Phys. E 17 (2008), 1367-1439*
- **pQCD**: the scaled PYTHIA calculations P. Braun-Munzinger et al. Phys. Lett. B 490 (2000), 196-202
- HRG: Hadron Resonance Gas Model M. I. Gorenstein et al. J.Phys.G 27 (2001) L47-L52
- Statistical Quark Coalescence: M. I. Gorenstein et al. Phys.Lett.B 509 (2001) 277-282
- **Dynamical Quark Coalescence**: ALCOR and MICOR models extended to charm formation. *P. Levai et al. J.Phys.G 27 (2001) 703-706*
- **SMES**: A statistical model of the early stage *M. Gazdzicki et al., Acta Phys. Polon. B 30 (1999),* 2705

NA38/NA50 & NA60

- Indirect estimation of open charm yield using dimuons from semi-leptonic charm quark pair decays by NA50 and NA60;
- Open charm contribution was separated via the fit procedure from an inclusive dimuon distribution, which also contains charmonium and Drell-Yan components;
- Centrality-dependent scaling factor for open charm production in PYTHIA is needed to reproduce the di-muon background in the intermediate mass range.

Anomalous J/ψ suppression

- For central heavy-ion collisions

 (N_{part} ~ 200) anomalous J/ψ suppression is
 observed in In+In and Pb+Pb collisions by NA60;
- It was initially attributed to onset of QGP formation in nuclear collisions, however CNM explanations have been proposed:
 - Shadowing;
 - Nuclear absorption.
- Open charm measurements would provide another view to the anomalous J/ψ suppression observed by NA60.

p+A measurements of charm at low $\sqrt{s_{NN}}$

- Open charm measurements in π+A and p+A data from SPS and Fermilab experiments;
- No data at the top SPS energies (for A+A).

The NA61/SHINE experiment at CERN SPS

Small Acceptance Vertex Detector

- 16 MIMOSA sensors with pixel size 18.4×18.4 μm²;
- Primary vertex resolution $\sigma_{x,v} \approx 1 \ \mu m$, $\sigma_z = 15 \ \mu m$;
- Secondary vertex resolution $\sigma_{x,y} \approx 10 \ \mu m, \ \sigma_z = 170 \ \mu m$ for D^0 and \overline{D}^0 .

Event and track selection

- Event selection:
 - □ Data taking of Xe+La 150A GeV/c in 2017 (before LS2);
 - □ 1.93M **0-20%** central events;
- Track selection:
 - \square 3 or 4 SAVD hits (\rightarrow spatial resolution)
 - □ \geq 10 TPC hits (\rightarrow momentum resolution)
 - No PID was applied.

$D^0 + \overline{D}^0$ reconstruction

$$D^0 \rightarrow K^- + \pi^+$$
 (BR=3.93%)
 $\overline{D}^0 \rightarrow K^+ + \pi^-$

15

Inclusive $D^0 + \overline{D}^0$ signal in 0-20% Xe+La at 150A GeV/c

- Kπ-invariant mass distribution for 0-20% Xe+La at 150A GeV/c;
- This is the first direct observation of $D^0 + \overline{D}^0$ signal at the SPS energies with significance better than 5.

Simulations in GEANT4

- For obtaining the corrections the simulation in GEANT4 was performed:
 - The background was described using the EPOS model;
 - The signal phase space was parametrized using 3 models;
 - The yield of $D^0 + \overline{D}^0$ from the models not used;
 - Parametrized signal is used to enrich background event.

Visible yield of $D^0 + \overline{D}^0$ in 0-20% Xe+La at 150A GeV/c

correction with:	$N_{visible}(D^0 + \overline{D}^0)$
AMPT	0.184±0.032 (stat)
PHSD	0.204±0.036 (stat)
PYTHIA/Angantyr	0.201±0.035 (stat)

$$-0.5 < y < 1.0$$

 $0.2 < p_T < 2.0 \text{ GeV/}c$

 $N_{visible}(D^0 + \overline{D}^0)$ 0.196 ± 0.035 (stat) ± 0.051 (syst)

Systematic uncertainties include:

- •Model-dependent phase space;
- •Track quality cut selection;
- •Spatial cuts selection;
- •Signal extraction procedure;
- •Background fitting procedure.

$\langle D^0 + \overline{D}{}^0 \rangle$ and dN/dy in 0-20% Xe+La at 150A GeV/c

correction with:	$\frac{dN (D^0 + \overline{D}^0)}{dy} \text{ for -0.5 < y < 1.0}$	Yield in 4π $\langle D^0 + \overline{D}^0 \rangle$
AMPT	0.129 ±0.023(stat) ± 0.035(syst)	0.218 ±0.039(stat) ± 0.060(syst)
PHSD	0.148 ±0.026(stat) ± 0.036(syst)	0.303 ±0.054(stat) ± 0.074(syst)
PYTHIA/Angantyr	0.147 ±0.026(stat) ± 0.037(syst)	0.300 ±0.052(stat) ± 0.075(syst)

Extrapolation factors for AMPT significantly differ from PHSD and PYTHIA/Angantyr due to different phase space distribution of D⁰+D

 ⁰
 AMPT: 84.1% of all D⁰+D

 ⁰ are in the selected y - p_T bin PHSD: 67.4%
 PYTHIA/Angantyr: 66.9%

Estimation of $\langle D^0 + \overline{D}^0 \rangle$ for Xe+La from p+A data

Results and discussion

- Fit *p*+A data with PYTHIA:
 - PYTHIA reasonably describes energy dependence;
 - PYTHIA underestimates the $D^0 + \overline{D}^0$ production cross-section by the factor 4.2.
- One can estimate $D^0 + \overline{D}^0$ yield for Xe+La at $\sqrt{s_{NN}}$ = 16.8 GeV from the extrapolation of π +A and p+A data:

$$\langle D^{0} + \overline{D}^{0} \rangle = 2 \times \frac{\sigma_{D^{0} + \overline{D}^{0}}}{\sigma_{inelastic for p+p} = 32 \text{mb}} \times N_{coll} = 0.043$$

Xe+La 0-20% N_{coll} = 331.1

20

Comparison of $\langle D^0 + \overline{D}^0 \rangle$ with models

Red band indicates theoretical uncertainty of the obtained result.

- Precision of the data is sufficient to discriminate between extreme model predictions;
- The dynamical microscopic models (Pythia, PHSD, HSD) significantly underestimate $\langle D^0 + \overline{D}^0 \rangle$ while ALCOR and SMES overestimate it;
- AMPT predicts value slightly ($\sim 2\sigma$) lower;
- The obtained results are above p+Aextrapolation at the level of $\sim 2-3\sigma$:
 - Imprecision of the extrapolated *p*+A cross-section;
 - Imprecision of the obtained result due to unknown phase space;

21

- Hadronization in A+A vs *p*+A?
- Fermi-motion?
- N_{coll} or N_{part} scaling?

Results and discussion

SMES: scaled from 0-20% Pb+Pb using $N_{part} = 173.7/272.5$ **ALCOR** (Dynamical Quark Coalescence): scaled from *J.Phys.G 27 (2001) 703-706* using $N_{coll} = 331.1/598.8$

Outlook: LS2 upgrade

- In 2022-2023 NA61/SHINE collected ~180M Pb+Pb events at 150A GeV/c. The data should allow:
 - the p_T and y differential measurements of D^0 and \overline{D}^0 ;
 - measurements of other charm hadrons;
 - \rightarrow Better insight into charm production mechanisms at energies close to production threshold.

Summary & Outlook

- The first direct open charm observation in heavy-ion collisions at the SPS energies was done for Xe+La 0-20% central collisions at 150A GeV/c.
- Precision of the obtained result is sufficient to disentangle between theoretical models.
- Stay tuned for new results!

Thank you for your attention!

Vertex Detector

- Main purpose of the Vertex Detector is the improvement of track resolution near the interaction point to allow reconstruction of secondary vertices;
- SAVD is positioned between the target and the VTPC-1;
- Four planes of coordinatesensitive detectors are located at 5, 10, 15 and 20 cm distance from the target.

25

Main Vertex Detector components

MIMOSA-26AHR

- 1152x576 pixels of 18.4x18.4µm2
- 3.5 μm resolution, 0.05% X0
- Readout time: 115.2 μs, 50μm thin
- PICSEL Group, IPHC Strasbourg

ALICE ITS ladder

- Ultra light carbon fibre
- < 0.3% X0 including water cooling</p>
- St. Petersburg, CERN
- CBM Micro Vertex Detector Prototype
 - Sensor integration
 - Flex print cables, Front-end boards
 - Read-out based on TRB3 FPGA Board

Goethe Universitet Frankfurt am Main

dE/dx

Comparison $N_{4\pi}(c\bar{c})$ with models

- Values for the models are scaled from Pb+Pb 0-20%;
- Values for data scaled from $\langle D^0 + \overline{D}^0 \rangle$ using ratio provided by event generators:

	Ratio of $c\bar{c}$ decaying into $(D^0 + \overline{D^0})$
PHSD	62%
PYTHIA/Angantyr	35%

 Comparison of the data and models show significant discrepancy between them:

while some models (SMES) is overestimating the charm yield, other (HSD) underestimating it.

- The closest model predictions to obtained result are HRG and Quark Coalescence.
 - |---| Stat uncertainty
 [---] Syst uncertainty

29