Charm production in LHCb fixed-target mode

Óscar Boente García, on behalf of the LHCb collaboration Hard Probes 2024 Nagasaki (Japan)

23/09/2024

LHCb in fixed-target configuration

- One-arm spectrometer at LHC fully instrumented in $2 < \eta < 5$
- Unique fixed-target configuration at LHC:
 - Gas injection into LHC primary vacuum thanks to SMOG system
 - Circulating LHC beams produce pA or PbA collisions
 - Achieve collisions at $\sqrt{s_{\rm NN}} \sim 100\,{\rm GeV}$
 - * Relatively unexplored energy range
 - Covers $-2.5 \leq y^* < 0$ in center-of-mass system

LHCb Run 1/2 detector: JINST 3, S08005 (2010), Int.J.Mod.Phys.A 30 (2015) 07, 1530022 LHCb Upgrade I (Run 3): JINST 19 (2024) P05065

Samples collected in during Run 2:

Charm production in LHCb fixed-target mode

Probing nuclear structure with charm

- Open charm: produced at early stage of the collision \rightarrow Access nuclear parton structure
- Probing Bjorken- $x \approx 0.02 0.3$:
 - Significant valence quark contribution \rightarrow test charm hadronisation mechanisms
 - Medium dependence
 - Probe intrinsic charm in the nucleon

· Data

Signal

Total

--- Background

Most recent open-charm measurement with largest Run 2 sample of pNe collisions: $\mathscr{L}_{pNe} = 21.7 \pm 1.4 \,\mathrm{nb}^{-1}$

EPJ C83 (2023) 6, 541

Candidates / (5 MeV/ c^2)

3500

3000

2500

2000

1500

1000

500

1800

1850

Charm production in LHCb fixed-target mode

3

Open charm production and asymmetry

- Measure production and D^0 , $\overline{D^0}$ production asymmetry
 - Probe of charm hadronization in the high-*x* region $\rightarrow D^0(c\overline{u}), D^0(\overline{c}u)$

$$\mathscr{A}_{\text{prod}} = \frac{Y_{\text{corr}}(D^0) - Y_{\text{corr}}(\overline{D^0})}{Y_{\text{corr}}(D^0) + Y_{\text{corr}}(\overline{D^0})}$$

Increasing *x*

- Vogt predictions including and excluding intrinsic charm (IC)
- MS prediction including IC and recombination with valence quark
- More statistics is needed for double-differential measurements

LHCb data: EPJ C83 (2023) 6, 541

 Vogt: PRC 103 (2021) 035204
 MS: PLB 835 (2022) 137530
 PHSD: PRC 96 (2017) 014905
 FONLL: PRL 95 (2005) 122001

 Óscar Boente García
 Charm production in LHCb fixed-target mode
 23/09/2024
 4

Quarkonium production in medium

- Quarkonium dissociation in Quark Gluon Plasma (QGP):
 - Need to measure **full spectra of charmonia states** $(J/\psi \rightarrow \chi_c \rightarrow \psi(2S))$ to correlate with feed-down contributions
- Charmonia recombination: expected at LHC energies and at low $p_{\rm T}$, competes with dissociation

Dissociation in QGP

- **Recombination in QGP**
- Non-QGP nuclear effects also play a role, also expected in medium-size systems:
 - Initial and final-state effects
 - Excited-to-ground state suppression observed in medium size systems (proton-nucleus)
 - * Final-state effects? Nuclear absorption, comover interaction or hot medium hypothesis

Quarkonia in pNe and PbNe collisions

 $\overline{}$ = 68.5 GeV pNe

2

Stat. + uncorr. syst.

4

Correlated

- $J/\psi, \psi(2S) \rightarrow \mu^+ \mu^-$ in pNe and PbNe collisions at $\sqrt{s_{\rm NN}} = 68.5 \,{\rm GeV}$
- $\psi(2S)/J/\psi$ ratio: key probe of final-state effects:
 - Limited by statistical uncertainties in pNe, unreachable in PbNe with Run 2 data
- $J/\psi/D^0$ production ratio in *p*Ne and PbNe:

 $\sigma_{J/\psi}/\sigma_{D^0}$

0.03

0.02

0.01

0

- Used D^0 as a proxy of total charm cross-section
- Significant $p_{\rm T}$ dependence $\rightarrow J/\psi$ experiences additional nuclear effects with respect to D^0

*p*Ne: <u>Eur.Phys.J.C 83 (2023) 7, 625</u> PbNe: Eur. Phys. J. C83 (2023) 658

Óscar Boente García

 $J/\psi/D^0$ ratio:

Charm production in LHCb fixed-target mode

 $p_{\rm T}$ [GeV/c]

y*∈[-2.29,0]

6

LHCb

6

 $p_{\rm T} [{\rm GeV}/c]$

$J/\psi/D^0$ ratio in PbNe collisions

• Assuming:
$$\sigma_{D^0}^{AB} = \sigma_{D^0}^{pp} \times AB$$
 and $\sigma_{J/\psi}^{AB} = \sigma_{J/\psi}^{pp} \times AB^{\alpha}$:
$$\frac{\sigma_{J/\psi}^{AB}}{\sigma_{D^0}^{AB}} = \frac{\sigma_{J/\psi}^{pp}}{\sigma_{D^0}^{pp}} \times AB^{\alpha-1} = C \times AB^{\alpha-1}$$

(functional form expected from nuclear absorption)

- $\alpha < 1 \implies J/\psi$ experiences additional nuclear effects with respect to D^0
 - α is compatible with NA50 values from proton-nucleus collisions (PLB 410 (1997) 337)
- Ratio with respect to $\langle N_{coll} \rangle$ does not show within current precision indications of **anomalous** suppression in PbNe
 - Larger luminosities and larger system size are needed!

Charm production in LHCb fixed-target mode

SMOG2: high-density gas target for Run 3

• New fixed-target device SMOG2

- storage cell, increase effective luminosity with the same gas flow in a $20\,cm$ wide region
- gain in luminosity up to $\, imes \, 100$ factor
- Possibility to inject new gases: H_2 (R_{AB} reference), D_2 (isospin violation), O_2 and larger nuclei (Kr,Xe)
- Fast switch between gases, can be done during LHC operation

More SMOG2 details in poster by F. Fabiano

Charm production in LHCb fixed-target mode

8

Two independent interaction regions

z position of primary vertices in a beam-beam bunch crossing:

arXiv:2407.14200

SMOC₂

- Separate beam-beam and beam-gas interaction regions
 - Enables simultaneous data-taking with pp

Candidates

- Massive increase in luminosity in fixedtarget configuration
- Precise luminosity determination: direct control of the gas density in storage cell
 - Aiming for < 2% systematic uncertainty

	DMOU	
	largest sample	example
	pNe@69~GeV	pAr@115 GeV
Integrated luminosity	$\sim 100 \text{ nb}^{-1}$	$\sim 45 \ \mathrm{pb}^{-1}$
syst. error on J/ψ x-sec.	6 - 7%	2 - $3~%$
J/ψ yield	15k	15M
D^0 yield	100k	150M
Λ_c^+ yield	1k	$1.5\mathrm{M}$
$\psi(2S)$ yield	150	150k
$\Upsilon(1S)$ yield	4	7k
Low-mass Drell-Yan yield	5	9k

SMOC

PbAr collisions from the 2023 ion run

- 2023 was a challenging year, LHC incident at VELO (vertex detector) vacuum:
 - VELO and gas-storage cell remained open → gas pressure at Run 2 levels, reduced tracking acceptance
- VELO issue successfully fixed and ready now for 2024 PbAr run
- Used 2023 run to evaluate performances of new tracking system at higher detector occupancies of PbAr collisions:

Charm production in LHCb fixed-target mode

A = 20

A = 40

Pb

Pb

Centrality in PbNe and PbAr collisions

PbNe in Run 2

JINST 17 (2022) 05, P05009

Óscar Boente García

- ECAL energy used to determine centrality at LHCb
- Maximum ECAL energy reach increased of a factor x2 with PbAr collisions with respect to PbNe

Studying quarkonia in QGP in PbAr

- Central PbAr collisions reach an energy density close to that of SPS fixed-target experiments
 → first indication of "anomalous" suppression
 - Larger statistics from SMOG2 and improved tracking efficiency with respect to Run 2
 - **Baseline** from pH_2 and pAr collisions
 - Expect no significant charm recombination

(At $\sqrt{s_{NN}} = 70.6 \,\text{GeV}$, only 1 $c\overline{c}$ pair produced per collision)

$$\sigma_{c\overline{c}}^{5.5\,\text{TeV}} \approx 10 \times \sigma_{c\overline{c}}^{200\,\text{GeV}} \approx 100 \times \sigma_{c\overline{c}}^{70\,\text{GeV}} \approx 1000 \times \sigma_{c\overline{c}}^{20\,\text{GeV}}$$

Unique setup to probe and understand quarkonia dissociation in the QGP

PRL 94, 082301 (2005)

SMOG2 data-taking in 2024

LHCb approaching nominal conditions:

- VELO fully closed, and all sub-detectors commissioned and integrated in the data-chain
- Running at $\mu_{pp} = 4.4$ and with good DAQ efficiency
- Gas injection in SMOG2 has become a routine operation at LHCb, injecting by default at almost every fill

SMOG2 data collected until 19/09

Open-charm in pAr collisions from 2024

- Data from pAr collisions collected this August with SMOG2
- Studying $D^0 \rightarrow K^- \pi^+$ decay channel for first production measurements:
 - Collected during nominal proton-proton physics run
 - Huge increase in statistics! From 24K to 1.2M collected in half the time!
 - Physics performance of 2024 data achieving that of Run 2

Charm production in LHCb fixed-target mode

23/09/2024

Quarkonia in pH_2 collisions from 2024

- Collected also large samples of pH_2 collision data!
 - Crucial for R_{pA} determinations
- Dimuon spectrum shows clean signals for $J/\psi \rightarrow \mu^+\mu^-$ and $\psi(2S) \rightarrow \mu^+\mu^-!$
 - Physics performances achieving those of Run 2
- Aiming for an early study the $\psi(2S)/J/\psi$ ratio to probe cold nuclear effects in different systems

Conclusions

- LHCb in its fixed-target mode provides a unique environment to study charm production in a variety of collision systems in an unexplored region of the phase-space
- Recent measurements with **Run 2 data** provide unique inputs:
 - D^0 and D^0 production and asymmetry in *p*Ne collisions probes nuclear partonic structure and hadronisation in an unexplored regime
 - Charmonium production in pNe and PbNe collisions tests the presence of nuclear effects and the presence of a hot nuclear medium
- The **new gas storage target SMOG2** is a huge step forward:
 - Allow for simultaneous data-taking with nominal proton-proton
 - Increase up to a factor $\times 100$ in statistics, higher precision
 - Allow for injection of new gases; a data sample with H_2 is already available
- Highly successful LHCb operations in 2024:
 - Demonstrated that we are able to run simultaneously with proton-proton operations
 - Physics performances in fixed-target collisions similar to those in proton-proton and achieving those of Run 2
 - We are ready for the ion run at the end of $2024 \rightarrow$ Aiming to collect a large PbAr sample

