The impact of glasma on heavy quark spectra and correlations

T. Lappi, H. Mäntysaari University of Jyväskylä

D. Müller TU Wien

 $\mathcal{D}\mathcal{A}$ vramescu

V. Greco

University of Catania

Based on arXiv2409.10564^{C™} and arXiv2409.10565^{C™}

Hard Probes 2024

Outline

Initial stage Glasma Color glass condensate • Features of the glasma Heavy quarks in glasma Transport equations • Transport coefficients Observables Nuclear modification factor • Two-particle correlations Summary

Heavy-ion collisions

Stages at weak coupling

Heavy-ion collisions

The very early stage

Out-of-equilibrium medium
 eff. kinetic theory
 hydro

Glasma color fields

Color glass condensate

Effective field theory of QCD at high energies

▶ High-energy nucleus \rightarrow mostly soft gluons

Color glass condensate

- ▶ Soft partons ightarrow gauge fields A^{μ}
- ▶ Hard partons ightarrow color current J^{μ}
 - ▶ Classical gluon fields → produced by color nucleus current
 - ► Classical Yang-Mills equations $\begin{array}{c} & & & \\ & & \downarrow \\ & & & \downarrow \\ & & & & \\ & & & \\ & & & \\ & & & \\$

Gelis, Iancu, Jalilian-Marian, Venugopalan [1002.0333]

Color glass condensate

MV model for large nuclei

 \blacktriangleright Color charge distribution in a nucleus at high energy \rightarrow thin color sheet

McLerran Venugopalan model

- Color charge ho
 ightarrow Gaussian probability
 - \blacktriangleright Color current of nucleus \rightarrow generated by color charge density
 - MV model for color charges ρ

$$ig\langle oldsymbol{
ho}(ec{x}_{ot}) oldsymbol{
ho}(ec{y}_{ot}) ig
angle \propto g^2 \mu^2 \delta^{(2)}(ec{x}_{ot} - ec{y}_{ot}) \ igg(ec{x}_{ot} - ec{y}_{ot}) \ igg(ec{y}_{ot} lpha ec{y}_{ot} ec{y}_{ot}$$

► Saturation momentum Q_s
Q_s ≈ 2 GeV at LHC central collisions

McLerran, Venugopalan [hep-ph/9309289]^C, Müller [1904.04267]^C

Collision of two nuclei

How to construct the glasma fields

► Light-cone diagram of collision Light-cone coordinates x[±] = t ± z

CGC fields (regions 1, 2)

Analytical pure gauge fields before collision

Initial condition (along light-cone)

- Match CGC fields on the light cone
- Impose boost-invariance Milne coordinates $\tau = \sqrt{x^+x^-}$ and $\eta = \ln(x^+/x^-)$

Glasma fields (region 3)

- Solve numerically YM equations
- Code gitlab.com/openpixi/curraun^{**}

Features of the glasma

Heavy quarks and jets are sensitive to the properties of the glasma fields

Flux tubes

 Initially only longitudinal electric and magnetic fields

Strong fields

• Strong longitudinal fields, dilute after $\tau \sim 1/Q_s$

Correlation domains

• Fields correlated inside flux tubes of size $\sim 1/Q_s$

Fukushima [1603.02340]^[], Lappi [hep-ph/0606207]^[], Ipp, Müller, Schuh [2009.14206]^[] HP24 lecture by Hidetoshi Taya[∯]

Heavy quarks in glasma

Probing the glasma correlation domains

Avramescu, Băran, Greco, Ipp, Müller, Ruggieri [2303.05599]^{C*} HP24 talk about charm quarks in IP-Glasma + next stages by Mayank Singh[§]

Particles in Yang-Mills fields

Wong's equations of motion

Classical transport equations

Wong's equations \leftrightarrow classical equations of motion for particles (x^{μ}, p^{μ}, Q) evolving in a Yang-Mills background field A^{μ}

Solve the classical transport equations with A^μ the glasma field
 Simulation code github.com/avramescudana/curraun/tree/wong^Ω

Particles in glasma fields

Visualizing the trajectories

- Change in coordinates due to momentum kicks
- Momentum broadening due to color Lorentz force

 Color charge rotation in SU(3) with Wilson lines

Avramescu, Băran, Greco, Ipp, Müller, Ruggieri [2303.05599]

Transport coefficient κ

Avramescu, Băran, Greco, Ipp, Müller, Ruggieri [2307.07999]^C Boguslavski, Kurkela, Lappi, Lindenbauer, Peuron [2303.12520]^C

Classical transport

- Momentum broadening $\delta p_i^2(\tau) = p_i^2(\tau) - p_i^2(\tau_{\text{form}})$
- ► Transport coefficient $\kappa_i(\tau) = \frac{\mathrm{d}}{\mathrm{d}\tau} \langle \delta p_i^2(\tau) \rangle$

Formation time $\tau_{\rm form} = 1/2m$ Relative time $\delta \tau = \tau - \tau_{\rm form}$ Longitudinal i = L, transverse i = T

- Anisotropic $\kappa_L \neq \kappa_T$
- Rapid increase in κ at early times
- Negative κ_L at late times
- Large κ peak in glasma
- Compatible to κ in EKT

Transport coefficient κ

Classical transport

- Momentum broadening $\delta p_i^2(\tau) = p_i^2(\tau) - p_i^2(\tau_{\text{form}})$
- ► Transport coefficient $\kappa_i(\tau) = \frac{d}{d\tau} \langle \delta p_i^2(\tau) \rangle$

Formation time $\tau_{\rm form}=1/2m$ Relative time $\delta\tau=\tau-\tau_{\rm form}$ Longitudinal i=L, transverse i=T

Limitation

► Transport coefficients ≠ measurable quantities

Avramescu, Băran, Greco, Ipp, Müller, Ruggieri [2307.07999]

How to probe pre-equilibrium

Relevant observables

0.20

Effect of glasma on spectra

Effect of glasma

- Initial flat p_T distribution
- p_T migration from small to large p_T

Effect of initial spectrum

Initial pQCD FONLL p_T spectrum
 Fixed-Order+Next-to-Leading Logarithm

Cacciari, Greco, Nason [hep-ph/9803400]^{C*}, [FONLL web form][%]

Nuclear modification factor

Extraction of R_{AA} in glasma

 R_{AA} in glasma

- Ratio of AA to pp normalized spectra
- ▶ AA evolved in glasma, pp from FONLL
- Glasma spectrum initialized with FONLL

R_{AA} in glasma explained

- Small p_T particles only migrate to larger p_T
- Depletion at small p_T , enhancement at large p_T

R_{AA} in glasma

Time au evolution

• More enhancement in R_{AA} at later τ

Effect of energy scales

 \blacktriangleright Weak dependence on $\sqrt{s_{\rm pp}}$ and glasma Q_s

R_{AA} in glasma with nPDFs

Previous studies

 AA glasma spectrum initialized with FONLL in pp, no nPDF effect

nPDF + glasma

Glasma effect modest compared to nPDF

Sun, Coci, Das, Plumari, Ruggieri, Greco [1902.06254] 🖉, Eskola, Paakkinen, Paukkunen, Salgado [1612.05741] 🦉

Effect of glasma on correlations

Two-particle correlations of $Q\overline{Q}$ pairs

Decorrelation of $Q\overline{Q}$ pairs

Quantifying the decorrelation in glasma

Decorrelation in glasma

- ▶ Two-particle correlations $\mathcal{C}(\Delta\phi, \Delta\eta)$ at $\Delta au = au au_{ ext{form}}$
- ▶ Initial peak $\delta(\Delta \phi \pi) \delta(\Delta \eta)$ gets broadened by glasma

Azimuthal decorrelation

- $D\overline{D}$ angular correlations
- Decorrelation width $\sigma_{\Delta\phi}(\Delta\tau)$

HP24 talks about $Q\overline{Q}$ correlations by Soumya Mohapatra^{\oint} and Pol-Bernard Gossiaux^{\oint}

Azimuthal decorrelation

Effect of heavy quark p_T

• Small p_T pairs decorrelate immediately

Effect of glasma Q_s

• Large Q_s glasma decorrelates pairs faster

Summary

Framework

- Classical transport of heavy quarks in glasma
- Large transport coefficient κ

Main results

- Impact of glasma on R_{AA} weaker than **nPDF** effect
- Large azimuthal decorrelation of QQ pairs in glasma Relevant for upcoming DD measurements in AA

Improvements

- Energy loss mechanism in glasma
- Couple glasma to effective kinetic theory (EKT)

HP24 talks about jet energy loss in glasma by Andrey Sadofyev[®] and Carlos Lamas[®] HP24 talks about jets in EKT by Florian Lindenbauer[®] and Sergio Barrera Cabodevila[®]

Thank you!