Characterisation of heavy-quark propagation and thermalisation in QGP with ALICE

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

Biao Zhang, Heidelberg University on behalf of the ALICE Collaboration Hard Probes 2024, 22-28 September Nagasaki, Japan

Physics motivation

- $\tau_{\rm b}$ ~0.12 fm/ $c < \tau_{\rm c}$ ~0.394 fm/ $c < \tau_{\rm OGP}$ ~ 1.5 fm/c [1][2]
- $m_{\rm b} > m_{\rm c} \gg \Lambda_{\rm OCD}$ (~ 0.2 GeV)
- $m_{\rm b} > m_{\rm c} \gg T_{\rm QGP}$ (~ 0.6 GeV)

Excellent probes to study the QGP properties:

• Parton energy loss: collisional or radiative, influenced by dead-cone effect

Heavy quarks produced via hard-scattering in initial stages of heavy-ion collisions due to their large mass :

[1] Ann.Rev.Nucl.Part.Sci. 69 (2019) 417-445 [2] F.M Liu et al., PRC 89, 034906 (2014)

2

Physics motivation

- $\tau_{\rm b}$ ~0.12 fm/ $c < \tau_{\rm c}$ ~0.394 fm/ $c < \tau_{\rm OGP}$ ~ 1.5 fm/c [1][2]
- $m_{\rm b} > m_{\rm c} \gg \Lambda_{\rm OCD}$ (~ 0.2 GeV)
- $m_{\rm b} > m_{\rm c} \gg T_{\rm OGP}$ (~ 0.6 GeV)

Excellent probes to study the QGP properties:

• Parton energy loss: collisional or radiative, influenced by dead-cone effect

• Collective motion: test degree of thermalization, path-length dependence

Heavy quarks produced via hard-scattering in initial stages of heavy-ion collisions due to their large mass :

[1] Ann.Rev.Nucl.Part.Sci. 69 (2019) 417-445 [2] F.M Liu et al., PRC 89, 034906 (2014)

3

Physics motivation

- $\tau_{\rm b}$ ~0.12 fm/ $c < \tau_{\rm c}$ ~0.394 fm/ $c < \tau_{\rm OGP}$ ~ 1.5 fm/c [1][2]
- $m_{\rm b} > m_{\rm c} \gg \Lambda_{\rm OCD}$ (~ 0.2 GeV)
- $m_{\rm b} > m_{\rm c} \gg T_{\rm OGP}$ (~ 0.6 GeV)

Excellent probes to study the QGP properties:

• Parton energy loss: collisional or radiative, influenced by dead-cone effect

- Collective motion: test degree of thermalization, path-length dependence
- HF correlations and jets: sensitive to medium-induced jet-fragmentation modification and energy loss [2] F.M Liu et al., PRC 89, 034906 (2014)

Heavy quarks produced via hard-scattering in initial stages of heavy-ion collisions due to their large mass :

[1] Ann.Rev.Nucl.Part.Sci. 69 (2019) 417-445

ALICE detector for Run 1 and 2

Inner Tracking System : Vertexing and tracking

Time Projection Chamber: Vertexing, Tracking and PID

Time-of-flight detector: PID

Hadronic decay channel reconstructed:

-
$$D^{0} \rightarrow K^{-}\pi^{+}(c, b)$$

- $D_{s}^{+} \rightarrow K^{-}K^{+}\pi^{+}(c, b)$
- $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}(c, b)$
- $D^{*+} \rightarrow D^{0}\pi^{+}$
- $D_{s1}^{+} \rightarrow D^{*}K_{s}^{0}$
- $D_{s2}^{*+} \rightarrow D^{+}K_{s}^{0}$

-
$$\Lambda_{c}^{+} \rightarrow pK_{s}^{0}(\mathbf{c}, \mathbf{b})$$

- $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}(\mathbf{c}, \mathbf{b})$
- $\Xi_{c}^{0} \rightarrow \Xi^{-}\pi^{+}$
- $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$
- $\Sigma_{c}^{0,++} \rightarrow \Lambda_{c}^{+}\pi^{-,+}$
- $\Omega_{c}^{0} \rightarrow \Omega^{-}\pi^{+}$

 $c \rightarrow e / b (\rightarrow c) \rightarrow e$

BiaoZhang biao.zhang@cern.ch

Trigger,

V0 and Zero-Degree Calorimeter: 111111111 Multiplicity or Centrality determination

Prompt: c \rightarrow H_c (D^{0,+}, D_s⁺, D^{*+}, Λ_c^+ , $\Xi_c^{0,+}$, Ω_c) **Non-prompt:** $b \rightarrow H_b \rightarrow H_c \ (D^{0,+}, D_s^+, \Lambda_c^+)$

pp collisions: \sqrt{s} = 5.02 TeV (\mathcal{L}_{int} ~ 19 nb⁻¹, MB), \sqrt{s} = 13 TeV (\mathcal{L}_{int} ~ 32 nb⁻¹, MB) - p–Pb collisions: $\sqrt{s_{NN}}$ = 5.02 TeV (Lint ~ 287 ub-1, MB)

- Pb–Pb collisions: $\sqrt{S_{NN}}$ = 5.02 TeV (0-10% L_{int} ~130 ub⁻¹, 30-50% L_{int} ~ 56 ub⁻¹)

5

ALICE detector for Run 3

10

 $1/N_{D^{\pm}} dN_{D^{\pm}}/dd_{0}^{XY}$

BiaoZhang biao.zhang@cern.ch

Prompt and Non-prompt $D^0 R_{AA}$ (Run 2)

JHEP 12 (2022) 126

Beauty quark *R*_{AA} **suppression**:

 \Rightarrow Hint of R_{AA} (charm) < R_{AA} (beauty) at p_T < 10 GeV/c

- \Rightarrow R_{AA} (beauty) / R_{AA} (charm) ratio comparison with models:
- $p_{\rm T} > 5 \, \text{GeV/c} : 3.9 \, \sigma$ above unity \rightarrow beauty quarks show less energy loss than charm quarks

Biao Zhang biao.zhang@cern.ch

• $p_{\rm T} < 5$ GeV/c : sensitive to shadowing / flow / hadronisation / decay kinematics for charm and beauty

Prompt and Non-prompt $D^0 R_{AA}$ (Run 2)

JHEP 12 (2022) 126

Beauty quark *R*_{AA} **suppression**:

- \Rightarrow Hint of R_{AA} (charm) < R_{AA} (beauty) at p_T < 10 GeV/c
- Testing effect of LGR ingredients:
- in-medium energy loss effect(i)

Biao Zhang biao.zhang@cern.ch

• $p_T < 5 \text{ GeV/c}$: The "valley" structure —> the formation of prompt D-mesons via charm-quark coalescence (iv) • $p_{\rm T}$ > 5 GeV/c : The significant enhancement of double ratio at high $p_{\rm T}$ is related to the mass dependent quark

8

D^0 -jet R_{AA} (Run 2)

Gain further direct access to the initial parton kinematics through D⁰-mesons tagged jets $\Rightarrow R_{AA}(D^{0}-jet) > R_{AA}(lnclusive jet)$? Comparison is sensitive to Casimir colour factor and dead-cone effect • Described by heavy quark transport model (LIDO) including collisions and radiation processes as well as the dead-

- cone effect
 - \Rightarrow Mass-hierarchy energy loss is more relevant at lower p_{T} ($p_{T} < 50$ GeV/c) compared to high p_{T}

Biao Zhang biao.zhang@cern.ch

NEW Paper

LIDO: Phys. Rev. C 100, 064911, Phys. Rev. C 98, 064901

D^0 -jet R_{AA} (Run 2)

Gain further direct access to the initial parton kinematics through D⁰-mesons tagged jets $\Rightarrow R_{AA}(D^{0}-jet) > R_{AA}(lnclusive jet)$? Comparison is sensitive to Casimir colour factor and dead-cone effect •Confirmed by the new preliminary result of inclusive jet based on the mixed-event approach (more precise and lower $p_{\rm T}$)

Biao Zhang biao.zhang@cern.ch

Prompt and Non-prompt $D^0 v_2$ (Run 2)

Eur. Phys. J. C 83 (2023) 1123

ALI-PUB

Beauty quark thermalisation:

- \Rightarrow v₂ (charm) > v₂ (beauty) at low $p_{\rm T}$
- \rightarrow Non-zero non-prompt D⁰ v_2 with 2.7 σ significance

• Beauty quarks flow or beauty-hadron flow from recombination of beauty with flowing light quarks? • Described by beauty transport models include collisional energy loss and hadronisation through coalescence

Prompt and Non-prompt $D^0 v_2$ (Run 2)

Eur. Phys. J. C 83 (2023) 1123

ALI-PUB

Beauty quark thermalisation:

- \Rightarrow v₂ (charm) > v₂ (beauty) at low $p_{\rm T}$
- No differences for the LIDO model for v_2 of different beauty probes
- Decay kinematics does not play a significant role?

 \rightarrow Non-zero non-prompt D⁰ v_2 with 2.7 σ significance and compatible with b (\rightarrow c) \rightarrow e v_2 within uncertainties

HF decay electron I_{AA} compared to light-flavor I_{AA} (Run 2)

Azimuthal correlation distributions of heavy-flavor decay electrons (HFe) with charged particles:

 $\Delta \varphi (\text{HFe} - h) = \varphi_{\text{Trigger}}^{\text{HF}} - \varphi_{\text{Assoc}}^{\text{h}}$

 Associated yield from near-side and away-side peaks in both pp and Pb–Pb collisions Interplay between the parton production spectrum and the energy loss in the medium by:

HF decay electron I_{AA} compared to light-flavor I_{AA} (Run 2)

LF: Eur. Phys. J. C 83 (2023) 497

HFe-hadron azimuthal correlations compared to di-hadron correlations: HFe I_{AA} in agreement with light flavor I_{AA} within uncertainties

Near-side I_{AA} : High p_T^{assoc} : consistent with unity. Low p_T^{assoc} : Hint of enhancement \rightarrow potential medium excitation? modified HQ fragmentation?

Away-side I_{AA} : Jet quenching dominant at high-

$$-p_{\rm T}^{\rm assoc}$$
 ($p_{\rm T}^{\rm assoc}$ > 4 GeV/c)

Prompt D meson v_2 in Pb–Pb collisions at 5.36 TeV (Run 3)

First measurement of prompt $D^{0,+}$ and D_s^+ meson v_2 in ALICE Run 3 (x 4 larger data sample w.r.t Run 2) : • Compatible $D^{0,+}v_2$ (non-strange) with $D_s^+v_2$ (strange)

- Compatible $D^{0,+} v_2$ (ALICE) with $D^0 v_2$ (CMS)

• Run 3 results are more precise of the $D^{0,+,*+}$ average from Run 2 and x 2 more granular at intermediate p_T

Prompt D meson v_2 in Pb–Pb collisions at 5.36 TeV (Run 3)

ALI-PREL-581255

TAMU: PLB 735 (2014) 445, PRL 124 (2020) 042301 PHSD: PRC 92 (2015) 014910 LGR: EPJC 80, no.7, (2020) 671 CATANIA: PRC 96, 044905 (2017)

Described by charm transport models that include collisional energy loss and hadronisation through coalescence

Prompt $\Lambda_c^+ v_2$ in Pb–Pb collisions at 5.36 TeV (Run 3)

Biao Zhang biao.zhang@cern.ch

Summary and outlook

The complete measurements from ALICE Run 2 provide valuable insights into:

- mass dependence in energy loss (R_{AA})
- different degrees of participation in collective motion and hadronization between charm and beauty quarks (v_2)
- HFe correlation measurements indicate the significant jet-quenching effects at high- p_{T}^{assoc} ($p_{T}^{assoc} > 4$ GeV/c)

- Run 2
- A factor 5 larger data sample will be analysed in the immediate future \blacktriangleright Extend the v_2 analysis including first measurement of charm-baryon v_2

New Inner Tracking System (ITS 2) detector and increased integrated luminosity for LHC Run 3 - The first prompt D meson v₂ measurements in ALICE Run 3 show results consistent with those from

Summary and outlook

The complete measurements from ALICE Run 2 provide valuable insights into:

- mass dependence in energy loss (R_{AA})
- different degrees of participation in collective motion and hadronization between charm and beauty quarks (v_2)
- HFe correlation measurements indicate the significant jet-quenching effects at high- p_{T}^{assoc} ($p_{T}^{assoc} > 4$ GeV/c)

- Run 2
- A factor 5 larger data sample will be analysed in the immediate future \rightarrow Extend the v_2 analysis including first measurement of charm-baryon v_2

New Inner Tracking System (ITS 2) detector and increased integrated luminosity for LHC Run 3 - The first prompt D meson v₂ measurements in ALICE Run 3 show results consistent with those from

you attention!

Backup slides

Analysis techniques: multi-classification via BDT

- Large branching ratios via semileptonic decays: $b \rightarrow e + X (\sim 10\%)$, $b \rightarrow c \rightarrow e + X (\sim 10\%)$
- Longer lifetime than c-quark and other electron sources: $\tau_b \sim 500 \ \mu m/c$; $\tau_c \sim 60-300 \ \mu m/c$ \rightarrow larger impact parameter (d₀) w.r.t primary vertex
- $b \rightarrow e$ yield obtained with template fit on impact parameter distributions

ALI-PUB-490991

 $d_0 \times \text{sgn}(\text{charge} \times \text{field}) \text{ (cm)}$

Analysis techniques: multi-classification via BDT

- Use Machine Learning method with a multi-classification by **BDT** to select candidates, separating prompt D and non-prompt D mesons and combinatorial background^[1]
- Signal was extracted from invariant mass fit

• Prompt and non-prompt D mesons contributions extracted from χ^2 minimization of the system of n sets of selections with different prompt and non-prompt D-meson contributions

Biao Zhang biao.zhang@cern.ch

ALI-PREL-502661

